各类排序算法的c++实现

来源:互联网 发布:自由主义 知乎 编辑:程序博客网 时间:2024/05/22 17:00
#ifndef SORT_H#define SORT_H#include <iostream>#include <queue>using namespace std;// 1.直接插入排序template<class ElemType>void InsertSort(ElemType data[], int n);// 2.折半插入排序template<class ElemType>void BInsertSort(ElemType data[], int n);// 3.Shell排序// 对data数组中的元素进行希尔排序,n为该数组大小// increments为增量序列,incrementsLength为增量序列的大小template<class ElemType>void ShellSort(ElemType data[],int increments[], int n, int incrementsLength);// 1.Bubble Sorttemplate<class ElemType>void BubbleSort(ElemType data[], int n);// 2.快速排序template<class ElemType>void QuickSort(ElemType data[], int n);//////////////////// Merge Sort//////////////////// 归并排序template<class ElemType>void MergeSort(ElemType data[],int n);template<class ElemType>void MergeSortNonRecursion(ElemType data[], int n);//////////////////// Selection sort//////////////////// 简单选择排序template<class ElemType>void SelectionSort(ElemType data[], int n);// 堆排序template<class ElemType>void HeapSort(ElemType data[],int n);///////////////// Radix Sort///////////////// 静态链表结点const int DIGITS = 10;const int RADIX = 10;class SLList;ostream& operator<<(ostream& os, SLList &s);// 由于VC++6.0使用using namespace std对于友元不支持// 故在类SLList之前做前向声明// 若使用其他C++编译器,这两句可删去// 静态链表static linked list// [0]:头结点class SLList{    struct Node    {        int  key[DIGITS];        int    info;        int    next;    };    friend ostream& operator<<(ostream& os, SLList &s);public:    SLList():data(NULL),length(0) {};    ~SLList();    void Arrange();    void Init(int arr[],int n);    void RadixSort();private:    void Distribute( int[], int[], int);    void Collection( int[], int[], int);    Node *data;    int length;};// 基数排序void RadixSort(int data[], int n);//void RadixSort(SLList&);///////////////// util///////////////template<class ElemType>void Swap( ElemType& a, ElemType& b){    ElemType c = a;    a = b;    b = c;}int init(int** data);template<class ElemType>void print(ElemType data[],int begin,int end);// 直接插入排序,数组data用于存放待排序元素,n为待排序元素个数template<class ElemType>void InsertSort(ElemType data[], int n){    ElemType tmp;    int i, j;    for (i = 1; i < n; i++)    {        if ( data[i] > data[i - 1])            continue;        tmp = data[i];                // 保存待插入的元素        data[i] = data[i - 1];        for ( j = i - 1; j > 0 && data[j - 1] > tmp; j--)            data[j] = data[j - 1];          // 元素后移        data[j] = tmp;                // 插入到正确位置    }}// 折半插入排序template<class ElemType>void BInsertSort(ElemType data[], int n){    ElemType tmp;    int i, j, mid, low, high;    for (i = 1; i < n; i++)    {        tmp = data[i];           // 保存待插入的元素        low = 0;        high = i-1;        while (low <= high)         // 在data[low..high]中折半查找有序插入的位置        {            mid = (low + high) / 2;      // 折半            if( tmp < data[mid])                high = --mid;         // 插入点在低半区            else                low = ++mid;         // 插入点在高半区        }        for(j = i - 1; j >= low; j--)            data[j + 1] = data[j];     // 元素后移        data[low] = tmp;          // 插入到正确位置    }}// 对data数组中的元素进行希尔排序,n为该数组大小// increments为增量序列,incrementsLength为增量序列的大小template<class ElemType>void ShellSort(ElemType data[], int increments[], int n, int incrementsLength){    int i, j, k;    ElemType tmp;    for ( k = 0; k < incrementsLength; k++)     // 进行以increments[k]为增量的排序    {        for ( i = increments[k]; i < n; i++)        {            tmp = data[i];            for ( j = i; j >= increments[k]; j -= increments[k])            {                if ( tmp >= data[j - increments[k]])                    break;                data[j] = data[j - increments[k]];            }            data[j] = tmp;        }    }}// 冒泡排序template<class ElemType>void BubbleSort(ElemType data[], int n){    int lastSwapIndex = n - 1; // 用于记录最后一次交换的元素下标    int i, j;    for (i = lastSwapIndex; i > 0; i = lastSwapIndex)    {        lastSwapIndex = 0;        for (j = 0; j < i; j++)            if (data[j] > data[j + 1])            {                Swap( data[j],data[j + 1]);                lastSwapIndex = j;            }    }}//快速排序template<class ElemType>int Partition(ElemType data[] , int low , int high){    ElemType pivot = data[low];    while (low < high)    {        while (low < high && data[high] >= pivot)            high--;        data[low] = data[high];        while (low < high && pivot >= data[low])            low++;        data[high] = data[low];    }    data[low] = pivot;    return low;}template<class ElemType>void QuickSort(ElemType data[], int begin, int end){    if (begin >= end)        return;    int pivot = Partition(data , begin , end);    QuickSort(data , begin , pivot - 1);    QuickSort(data , pivot + 1, end);}template<class ElemType>void QuickSort(ElemType data[], int n){    if (n < 2)        return;    QuickSort(data, 0, n-1);}// 将数组data中,[lptr...rptr-1][rptr...rightEnd]两部分的元素进行合并// tmpArr为合并时的辅存空间template<class ElemType>void Merge(ElemType data[], ElemType tmpArr[], int lptr, int rptr, int rightEnd){    int leftEnd = rptr - 1;    int ptr,i;    ptr = i = lptr;    while (lptr <= leftEnd && rptr <= rightEnd)        if (data[lptr] <= data[rptr])            tmpArr[ptr++] = data[lptr++];        else            tmpArr[ptr++] = data[rptr++];    while (lptr <= leftEnd)        tmpArr[ptr++] = data[lptr++];    while (rptr <= rightEnd)        tmpArr[ptr++] = data[rptr++];    for (; i <= rightEnd; i++)        data[i] = tmpArr[i];}// 递归实现// 将数组data中,[begin...end]的元素进行归并排序template<class ElemType>void MSort(ElemType data[], ElemType tmpArr[], int begin, int end){    int middle;    if ( begin >= end)        return;    middle = (begin + end)/2;   // 将data平分为[begin..middle]和[middle..end]    MSort( data, tmpArr, begin, middle);  // 递归前半部分    MSort( data, tmpArr, middle + 1, end);  // 递归后半部分    Merge( data, tmpArr, begin, middle + 1, end); // 将data[begin..middle],data[middle..end]进行归并}template<class ElemType>void MergeSort(ElemType data[], int n){    ElemType* pArr = NULL;    pArr = new ElemType[n];    MSort( data,pArr,0,n-1);    delete[] pArr;}// 非递归实现template<class ElemType>void MPass(ElemType data[], ElemType tmpArr[], int n, int mergeLength){    int i = 0;    while (i <= n - 2 * mergeLength)    {        Merge(data, tmpArr, i, i + mergeLength, i + 2 * mergeLength - 1);        i = i + 2 * mergeLength;    }    if (i + mergeLength < n)        Merge(data, tmpArr, i, i + mergeLength, n - 1);}template<class ElemType>void MergeSortNonRecursion(ElemType data[], int n){    int mergeLength = 1;    ElemType* pArr = NULL;    pArr = new ElemType[n];    while (mergeLength < n)    {        MPass(data, pArr, n, mergeLength);        mergeLength *= 2;    }    delete[] pArr;}// 简单选择排序template<class ElemType>void SelectionSort(ElemType data[], int n){    int i, j, min;    for (i = 0; i < n; i++)    {        min = i;        for (j = i + 1; j < n; j++)        {            if ( data[j] < data[min])                min = j;        }        Swap(data[i],data[min]);    }}// 堆排序// i为指定元素在数组中的下标// 返回指定结点的左孩子在数组中的下标inline int LeftChild(int i){    return 2 * i + 1;}template<class ElemType>void HeapAdjust(ElemType data[], int i, int n){    ElemType tmp;    int child;    for ( tmp = data[i]; LeftChild(i) < n; i = child)    {        child = LeftChild(i);        if (child != n - 1 && data[child + 1] > data[child])  // 取较大的孩子结点            child++;        if (tmp < data[child])            data[i] = data[child];        else            break;    }    data[i] = tmp;}template<class ElemType>void HeapSort(ElemType data[], int n){    int i;    for (i = n/2; i >= 0; i--)  // 建堆        HeapAdjust(data, i, n);    for (i = n - 1; i > 0; i--)  // 将堆的根结点与最后的一个叶结点交换,并进行调整    {        Swap(data[0],data[i]);        HeapAdjust(data, 0, i);    }}// 用数组实现的基数排序void RadixSort(int data[], int n){    const int radix = 10;    const int digits = 10;    int i,j,k,factor;    queue<int> queues[radix];    for ( i = 0,factor = 1; i < digits; i++,factor *= radix)    {        for ( j = 0; j < n; j++)            queues[(data[j]/factor)%radix].push(data[j]);    // 分配        for ( k = j = 0; j < radix; j++,k++)          // 收集            while (!queues[j].empty())            {                data[k] = queues[j].front();                queues[j].pop();            }    }}// 分配void SLList::Distribute(int front[], int rear[], int digit){    int i, index;    for (i = 0; i < RADIX; i++)        front[i] = 0;    for (i = data[0].next; i > 0; i = data[i].next)    {        index = data[i].key[digit];        if (front[index] == 0)            front[index] = i;        else            data[rear[index]].next = i;        rear[index] = i;    }}// 收集void SLList::Collection(int front[], int rear[], int digit){    int i, current;    for (i = 0; front[i] == 0; i++); // 找到第一个非空子表    data[0].next = front[i];  // 头结点指向第一个非空子表中第一个结点    current = rear[i++];    for (; i < RADIX; i++)    {        if (front[i] == 0)            continue;        data[current].next = front[i]; // 链接两个非空子表        current = rear[i];    }    data[current].next = 0;}// 用SLList实现的基数排序void SLList::RadixSort(){    int i;    int front[RADIX],rear[RADIX];    // 从最低位优先依次对各关键字进行分配收集    for ( i = 0; i < DIGITS; i++)    {        Distribute(front, rear, i);        Collection(front, rear, i);    }}SLList::~SLList(){    delete[] data;    length = 0;}void SLList::Init(int arr[], int n){    length = n + 1;    if (data != NULL)        delete[] data;    data = new Node[n + 1];    data[0].next = 1;    for ( int i = 1; i <= n; i++)    {        int value = data[i].info = arr[i - 1];        for (int j = 0; j < 10; j++)        {            data[i].key[j] = value % 10;// + '0';            value /= 10;        }        data[i].next = i + 1;    }    data[n].next = 0;}// 根据链表中各结点的指针值调整元素位置,使得SLList中元素按关键字正序排列void SLList::Arrange(){    int i, tmp;    int current = data[0].next;   // current存放第一个元素的当前位置    for (i = 1; i < length; i++)    {        while (current < i)   // 找到第i个元素,并用current存放其在静态链表中当前位置            current = data[current].next;        tmp = data[current].next;        if (current != i)        {            Swap(data[current], data[i]); // 第i个元素调整到位            data[i].next = current;  // 指向被移走的元素        }        current = tmp;    // 为找第i + 1个元素做准备    }}ostream& operator<<(ostream& os,SLList &s){    for (int i = 1; i < s.length; i++)        cout << s.data[i].info << " ";    os << endl;    return os;}#endif

1 0
原创粉丝点击