linux wait返回及timer_create问题

来源:互联网 发布:mac标点 编辑:程序博客网 时间:2024/06/01 07:13

前言

前段时间查一个问题,发现应用层在使用wait函数时,在没有等到信号的情况下,wait函数返回了,并且返回值为0,没有超时及异常提示,不符合常理,跟进后发现,虽然c库代码编写不够严谨,但根源是应用层代码对timer_create的不当使用,引入了隐患。在这做一个分析,作为以后分析同类问题的参考。

一、 wait函数不合理返回问题

如下面代码,在postAndWait函数中,先把task queue进处理队列,然后调用wait等待task处理完成发送信号,接着在run函数中运行task及发送信号,当wait函数收到信号后,正常返回,这为正常的运行流程。但发现有时出现了在run中,task还没运行,也没有发送信号,wait函数就已经返回,并且返回值为0(success)。
frameworks\base\libs\hwui\renderthread\ RenderProxy.cpp

void* RenderProxy::postAndWait(MethodInvokeRenderTask* task) {    void* retval;    task->setReturnPtr(&retval);    SignalingRenderTask syncTask(task, &mSyncMutex, &mSyncCondition);    AutoMutex _lock(mSyncMutex);    mRenderThread.queue(&syncTask);    // queue task    mSyncCondition.wait(mSyncMutex);   // 等待task运行完成发送信号    return retval;     // 若在task还没运行,wait就返回,task被释放,task运行线程不知道task被释放,一到task运行就出问题}

frameworks\base\libs\hwui\renderthread\ RenderTask.cpp

void SignalingRenderTask::run() {    mTask->run();         // task的运行    mLock->lock();    mSignal->signal();      // 发送信号给wait    mLock->unlock();}

二、wait不合理返回分析

跟进内核代码发现,当wait函数在等待时,wait所在的线程被挂起,正常情况下,当task的运行线程给wait所在的线程发送信号后,wait所在的线程被设置为可运行状态,等待系统调度运行并正常返回,wait函数调用路径及返回如下,调用路径如绿色标示的,返回点如紫色标示。(发送信号流程的代码位置与wait流程代码处于相同文件中,可自行跟踪)
system\core\include\utils\ Condition.h

inline status_t Condition::wait(Mutex& mutex) {    return -pthread_cond_wait(&mCond, &mutex.mMutex); }

bionic\libc\bionic\ Pthread_cond.cpp

int pthread_cond_wait(pthread_cond_t* cond, pthread_mutex_t* mutex) {  return __pthread_cond_timedwait(cond, mutex, NULL,  COND_GET_CLOCK(cond->value));}

bionic\libc\bionic\ Pthread_cond.cpp

__LIBC_HIDDEN__int __pthread_cond_timedwait(pthread_cond_t* cond, pthread_mutex_t* mutex, const timespec* abstime, clockid_t clock) {  timespec ts;  timespec* tsp;  if (abstime != NULL) {         // 没有设置超时时间,不走这里    if (__timespec_from_absolute(&ts, abstime, clock) < 0) {      return ETIMEDOUT;    }    tsp = &ts;  } else {    tsp = NULL;  }  return __pthread_cond_timedwait_relative(cond, mutex, tsp);}

bionic\libc\bionic\ Pthread_cond.cpp

__LIBC_HIDDEN__int __pthread_cond_timedwait_relative(pthread_cond_t* cond, pthread_mutex_t* mutex, const timespec* reltime) {  int old_value = cond->value;  pthread_mutex_unlock(mutex);  int status = __futex_wait_ex(&cond->value, COND_IS_SHARED(cond->value), old_value, reltime);  pthread_mutex_lock(mutex);  if (status == -ETIMEDOUT) {    return ETIMEDOUT;  }  return 0;}bionic\libc\private\ Bionic_futex.hstatic inline int __futex_wait_ex(volatile void* ftx, bool shared, int value, const struct timespec* timeout) {  return __futex(ftx, shared ? FUTEX_WAIT : FUTEX_WAIT_PRIVATE, value, timeout);}

bionic\libc\private\ Bionic_futex.h

static inline __always_inline int __futex(volatile void* ftx, int op, int value, const struct timespec* timeout) {  // Our generated syscall assembler sets errno, but our callers (pthread functions) don't want to.  int saved_errno = errno;  int result = syscall(__NR_futex, ftx, op, value, timeout);  if (__predict_false(result == -1)) {    result = -errno;    errno = saved_errno;  }  return result;}

kernel\kernel\ Futex.c

SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,        struct timespec __user *, utime, u32 __user *, uaddr2,        u32, val3){    struct timespec ts;    ktime_t t, *tp = NULL;    u32 val2 = 0;    int cmd = op & FUTEX_CMD_MASK;    if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||              cmd == FUTEX_WAIT_BITSET ||              cmd == FUTEX_WAIT_REQUEUE_PI)) {        if (copy_from_user(&ts, utime, sizeof(ts)) != 0)            return -EFAULT;        if (!timespec_valid(&ts))            return -EINVAL;        t = timespec_to_ktime(ts);        if (cmd == FUTEX_WAIT)            t = ktime_add_safe(ktime_get(), t);        tp = &t;    }    /*     * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.     * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.     */    if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||        cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)        val2 = (u32) (unsigned long) utime;    return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);}

kernel\kernel\ Futex.c

long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,        u32 __user *uaddr2, u32 val2, u32 val3){    int cmd = op & FUTEX_CMD_MASK;    unsigned int flags = 0;    if (!(op & FUTEX_PRIVATE_FLAG))        flags |= FLAGS_SHARED;    if (op & FUTEX_CLOCK_REALTIME) {        flags |= FLAGS_CLOCKRT;        if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)            return -ENOSYS;    }    switch (cmd) {    case FUTEX_LOCK_PI:    case FUTEX_UNLOCK_PI:    case FUTEX_TRYLOCK_PI:    case FUTEX_WAIT_REQUEUE_PI:    case FUTEX_CMP_REQUEUE_PI:        if (!futex_cmpxchg_enabled)            return -ENOSYS;    }    switch (cmd) {    case FUTEX_WAIT:        val3 = FUTEX_BITSET_MATCH_ANY;    case FUTEX_WAIT_BITSET:        return futex_wait(uaddr, flags, val, timeout, val3);    case FUTEX_WAKE:        val3 = FUTEX_BITSET_MATCH_ANY;    case FUTEX_WAKE_BITSET:        return futex_wake(uaddr, flags, val, val3);    case FUTEX_REQUEUE:        return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);    case FUTEX_CMP_REQUEUE:        return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);    case FUTEX_WAKE_OP:        return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);    case FUTEX_LOCK_PI:        return futex_lock_pi(uaddr, flags, val, timeout, 0);    case FUTEX_UNLOCK_PI:        return futex_unlock_pi(uaddr, flags);    case FUTEX_TRYLOCK_PI:        return futex_lock_pi(uaddr, flags, 0, timeout, 1);    case FUTEX_WAIT_REQUEUE_PI:        val3 = FUTEX_BITSET_MATCH_ANY;        return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,                         uaddr2);    case FUTEX_CMP_REQUEUE_PI:        return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);    }    return -ENOSYS;}

kernel\kernel\ Futex.c

static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,              ktime_t *abs_time, u32 bitset){    struct hrtimer_sleeper timeout, *to = NULL;    struct restart_block *restart;    struct futex_hash_bucket *hb;    struct futex_q q = futex_q_init;    int ret;    if (!bitset)        return -EINVAL;    q.bitset = bitset;    if (abs_time) {        to = &timeout;        hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?                      CLOCK_REALTIME : CLOCK_MONOTONIC,                      HRTIMER_MODE_ABS);        hrtimer_init_sleeper(to, current);        hrtimer_set_expires_range_ns(&to->timer, *abs_time,                         current->timer_slack_ns);    }retry:    /*     * Prepare to wait on uaddr. On success, holds hb lock and increments     * q.key refs.     */    ret = futex_wait_setup(uaddr, val, flags, &q, &hb);    if (ret)        goto out;    /* queue_me and wait for wakeup, timeout, or a signal. */    futex_wait_queue_me(hb, &q, to);    /* If we were woken (and unqueued), we succeeded, whatever. */    ret = 0;    /* unqueue_me() drops q.key ref */    if (!unqueue_me(&q)) {                           /* unqueue_me返回值情况 */         /* 1 - if the futex_q was still queued (and we removed unqueued it); */         /* 0 - if the futex_q was already removed by the waking thread(发送信号唤醒的情况) */           goto out;                         // 正常等到信号后返回走这里    }    ret = -ETIMEDOUT;    if (to && !to->task) {        goto out;    }    /*     * We expect signal_pending(current), but we might be the     * victim of a spurious wakeup as well.     */    if (!signal_pending(current)) {        trace_printk("retry\n");        goto retry;    }    ret = -ERESTARTSYS;    if (!abs_time) {        goto out;    }    restart = &current_thread_info()->restart_block;    restart->fn = futex_wait_restart;    restart->futex.uaddr = uaddr;    restart->futex.val = val;    restart->futex.time = abs_time->tv64;    restart->futex.bitset = bitset;    restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;    ret = -ERESTART_RESTARTBLOCK;out:    if (to) {        hrtimer_cancel(&to->timer);        destroy_hrtimer_on_stack(&to->timer);    }    return ret;            // 正常返回值为0}

kernel\kernel\ Futex.c

static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,                struct hrtimer_sleeper *timeout){    /*     * The task state is guaranteed to be set before another task can     * wake it. set_current_state() is implemented using set_mb() and     * queue_me() calls spin_unlock() upon completion, both serializing     * access to the hash list and forcing another memory barrier.     */    set_current_state(TASK_INTERRUPTIBLE);    queue_me(q, hb);    /* Arm the timer */    if (timeout) {        hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);        if (!hrtimer_active(&timeout->timer))            timeout->task = NULL;    }    /*     * If we have been removed from the hash list, then another task     * has tried to wake us, and we can skip the call to schedule().     */    if (likely(!plist_node_empty(&q->list))) {        /*         * If the timer has already expired, current will already be         * flagged for rescheduling. Only call schedule if there         * is no timeout, or if it has yet to expire.         */        if (!timeout || timeout->task) {            freezable_schedule();                 }    }    __set_current_state(TASK_RUNNING);}

如果该等待线程使用timer_create创建了定时器,并且创建的定时器超时是给当前线程发送信号(timer_create的创建在第4节分析),当定时器超时后,就会把当前线程设置为可运行的状态,等待系统调度运行。若这时该线程刚好调用了wait在等待信号,由于该线程已经被设置为可运行状态,当调度到该线程运行时,futex_wait_queue_me函数的freezable_schedule()就会返回,这时futex_wait返回流程与返回值都与正常接收到信号时返回的不一样,如下面代码标示:
kernel\kernel\ Futex.c

static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,              ktime_t *abs_time, u32 bitset){    struct hrtimer_sleeper timeout, *to = NULL;    struct restart_block *restart;    struct futex_hash_bucket *hb;    struct futex_q q = futex_q_init;    int ret;    if (!bitset)        return -EINVAL;    q.bitset = bitset;    if (abs_time) {        to = &timeout;        hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?                      CLOCK_REALTIME : CLOCK_MONOTONIC,                      HRTIMER_MODE_ABS);        hrtimer_init_sleeper(to, current);        hrtimer_set_expires_range_ns(&to->timer, *abs_time,                         current->timer_slack_ns);    }retry:    /*     * Prepare to wait on uaddr. On success, holds hb lock and increments     * q.key refs.     */    ret = futex_wait_setup(uaddr, val, flags, &q, &hb);    if (ret)        goto out;    /* queue_me and wait for wakeup, timeout, or a signal. */    futex_wait_queue_me(hb, &q, to);    /* If we were woken (and unqueued), we succeeded, whatever. */    ret = 0;    /* unqueue_me() drops q.key ref */    if (!unqueue_me(&q)) {                           /* unqueue_me返回值情况 */         /* 1 - if the futex_q was still queued (and we removed unqueued it); */         /* 0 - if the futex_q was already removed by the waking thread(发送信号唤醒的情况) */           goto out;   // 不是等待的信号唤醒,futex_q was still queued,unqueue_me返回1,流程不走这    }    ret = -ETIMEDOUT;    if (to && !to->task) {        goto out;           //没有设置超时返回,没走这    }    /*     * We expect signal_pending(current), but we might be the     * victim of a spurious wakeup as well.     */    if (!signal_pending(current)) {        goto retry;        // 是该线程定时器唤醒,不走这    }    ret = -ERESTARTSYS;    if (!abs_time) {        goto out;         // 最后流程到这里,则ret = -ERESTARTSYS    }    restart = &current_thread_info()->restart_block;    restart->fn = futex_wait_restart;    restart->futex.uaddr = uaddr;    restart->futex.val = val;    restart->futex.time = abs_time->tv64;    restart->futex.bitset = bitset;    restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;    ret = -ERESTART_RESTARTBLOCK;out:    if (to) {        hrtimer_cancel(&to->timer);        destroy_hrtimer_on_stack(&to->timer);    }    return ret;            // 返回值为-ERESTARTSYS(-512)}
从上面代码可以看出,futex_wait的返回值并不为0,但到了应用层得到的返回值就变成0了,分析后发现是c库的代码不严谨导致的,如下面代码:

bionic\libc\bionic\ Pthread_cond.cpp

__LIBC_HIDDEN__int __pthread_cond_timedwait_relative(pthread_cond_t* cond, pthread_mutex_t* mutex, const timespec* reltime) {  int old_value = cond->value;  pthread_mutex_unlock(mutex);  int status = __futex_wait_ex(&cond->value, COND_IS_SHARED(cond->value), old_value, reltime);  pthread_mutex_lock(mutex);  if (status == -ETIMEDOUT) {    return ETIMEDOUT;        // 只有超时返回时,才返回非0值,其它情况都是返回0  }  return 0;}
这样就导致了上层无法识别出除了超时之外的其它情况返回。

三、定时器超时唤醒线程的流程

定时器超时唤醒线程与发送信号唤醒线程流程不同,下面代码分析定时器唤醒时走的流程,调用路径如绿色标示(有关linux定时器的知识,可以搜索“linux定时器的实现”,可以找到很多介绍)。
kernel\kernel\Posix-timers.c

int posix_timer_event(struct k_itimer *timr, int si_private)   // posix定时器超时后调用到这里{    struct task_struct *task;    int shared, ret = -1;    /*     * FIXME: if ->sigq is queued we can race with     * dequeue_signal()->do_schedule_next_timer().     *     * If dequeue_signal() sees the "right" value of     * si_sys_private it calls do_schedule_next_timer().     * We re-queue ->sigq and drop ->it_lock().     * do_schedule_next_timer() locks the timer     * and re-schedules it while ->sigq is pending.     * Not really bad, but not that we want.     */    timr->sigq->info.si_sys_private = si_private;    rcu_read_lock();    task = pid_task(timr->it_pid, PIDTYPE_PID);    if (task) {        shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);        ret = send_sigqueue(timr->sigq, task, shared);    }    rcu_read_unlock();    /* If we failed to send the signal the timer stops. */    return ret > 0;}

kernel\kernel\Signal.c

int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group){    int sig = q->info.si_signo;    int sival = q->info.si_value.sival_int;    struct sigpending *pending;    unsigned long flags;    int ret, result;    BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));    ret = -1;    if (!likely(lock_task_sighand(t, &flags)))        goto ret;    ret = 1; /* the signal is ignored */    result = TRACE_SIGNAL_IGNORED;    if (!prepare_signal(sig, t, false))        goto out;    ret = 0;    if (unlikely(!list_empty(&q->list))) {        /*         * If an SI_TIMER entry is already queue just increment         * the overrun count.         */        BUG_ON(q->info.si_code != SI_TIMER);        q->info.si_overrun++;        result = TRACE_SIGNAL_ALREADY_PENDING;        goto out;    }    q->info.si_overrun = 0;    signalfd_notify(t, sig);    pending = group ? &t->signal->shared_pending : &t->pending;    list_add_tail(&q->list, &pending->list);    sigaddset(&pending->signal, sig);    complete_signal(sig, t, group);    result = TRACE_SIGNAL_DELIVERED;out:    trace_signal_generate(sig, &q->info, t, group, result);    unlock_task_sighand(t, &flags);ret:    return ret;}

kernel\kernel\Signal.c

static void complete_signal(int sig, struct task_struct *p, int group){    struct signal_struct *signal = p->signal;    struct task_struct *t;    /*     * Now find a thread we can wake up to take the signal off the queue.     *     * If the main thread wants the signal, it gets first crack.     * Probably the least surprising to the average bear.     */    if (wants_signal(sig, p))        t = p;    else if (!group || thread_group_empty(p))        /*         * There is just one thread and it does not need to be woken.         * It will dequeue unblocked signals before it runs again.         */        return;    else {        /*         * Otherwise try to find a suitable thread.         */        t = signal->curr_target;        while (!wants_signal(sig, t)) {            t = next_thread(t);            if (t == signal->curr_target)                /*                 * No thread needs to be woken.                 * Any eligible threads will see                 * the signal in the queue soon.                 */                return;        }        signal->curr_target = t;    }    /*     * Found a killable thread.  If the signal will be fatal,     * then start taking the whole group down immediately.     */    if (sig_fatal(p, sig) &&        !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&        !sigismember(&t->real_blocked, sig) &&        (sig == SIGKILL || !t->ptrace)) {        /*         * This signal will be fatal to the whole group.         */        if (!sig_kernel_coredump(sig)) {            /*             * Start a group exit and wake everybody up.             * This way we don't have other threads             * running and doing things after a slower             * thread has the fatal signal pending.             */            signal->flags = SIGNAL_GROUP_EXIT;            signal->group_exit_code = sig;            signal->group_stop_count = 0;            t = p;            do {                task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);                sigaddset(&t->pending.signal, SIGKILL);                signal_wake_up(t, 1);            } while_each_thread(p, t);            return;        }    }    /*     * The signal is already in the shared-pending queue.     * Tell the chosen thread to wake up and dequeue it.     */    signal_wake_up(t, sig == SIGKILL);    return;}

kernel\include\linux\Sched.h

static inline void signal_wake_up(struct task_struct *t, bool resume){    signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);}kernel\kernel\Signal.cvoid signal_wake_up_state(struct task_struct *t, unsigned int state){    set_tsk_thread_flag(t, TIF_SIGPENDING);    /*     * TASK_WAKEKILL also means wake it up in the stopped/traced/killable     * case. We don't check t->state here because there is a race with it     * executing another processor and just now entering stopped state.     * By using wake_up_state, we ensure the process will wake up and     * handle its death signal.     */    if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))        kick_process(t);}

kernel\kernel\sched\Core.c

int wake_up_state(struct task_struct *p, unsigned int state){    return try_to_wake_up(p, state, 0);}kernel\kernel\sched\Core.cstatic inttry_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags){    unsigned long flags;    int cpu, success = 0;    /*     * If we are going to wake up a thread waiting for CONDITION we     * need to ensure that CONDITION=1 done by the caller can not be     * reordered with p->state check below. This pairs with mb() in     * set_current_state() the waiting thread does.     */    smp_mb__before_spinlock();    raw_spin_lock_irqsave(&p->pi_lock, flags);    if (!(p->state & state))        goto out;    success = 1; /* we're going to change ->state */    cpu = task_cpu(p);    if (p->on_rq && ttwu_remote(p, wake_flags))        goto stat;#ifdef CONFIG_SMP    /*     * If the owning (remote) cpu is still in the middle of schedule() with     * this task as prev, wait until its done referencing the task.     */    while (p->on_cpu)        cpu_relax();    /*     * Pairs with the smp_wmb() in finish_lock_switch().     */    smp_rmb();    p->sched_contributes_to_load = !!task_contributes_to_load(p);    p->state = TASK_WAKING;    if (p->sched_class->task_waking)        p->sched_class->task_waking(p);    cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);    if (task_cpu(p) != cpu) {        wake_flags |= WF_MIGRATED;        set_task_cpu(p, cpu);    }#endif /* CONFIG_SMP */    ttwu_queue(p, cpu);     /* run ttwu_do_activate->ttwu_do_wakeup */stat:    ttwu_stat(p, cpu, wake_flags);out:    raw_spin_unlock_irqrestore(&p->pi_lock, flags);    return success;}kernel\kernel\sched\Core.cstatic void ttwu_queue(struct task_struct *p, int cpu){    struct rq *rq = cpu_rq(cpu);#if defined(CONFIG_SMP)    if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {        sched_clock_cpu(cpu); /* sync clocks x-cpu */        ttwu_queue_remote(p, cpu);        return;    }#endif    raw_spin_lock(&rq->lock);    ttwu_do_activate(rq, p, 0);    raw_spin_unlock(&rq->lock);}kernel\kernel\sched\Core.cstatic voidttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags){#ifdef CONFIG_SMP    if (p->sched_contributes_to_load)        rq->nr_uninterruptible--;#endif    ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);    ttwu_do_wakeup(rq, p, wake_flags);}

kernel\kernel\sched\Core.c

static voidttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags){    check_preempt_curr(rq, p, wake_flags);    trace_sched_wakeup(p, true);    p->state = TASK_RUNNING;    // 设置为可运行状态,后面任务被调度了就可以运行#ifdef CONFIG_SMP    if (p->sched_class->task_woken)        p->sched_class->task_woken(rq, p);    if (rq->idle_stamp) {        u64 delta = rq->clock - rq->idle_stamp;        u64 max = 2*sysctl_sched_migration_cost;        if (delta > max)            rq->avg_idle = max;        else            update_avg(&rq->avg_idle, delta);        rq->idle_stamp = 0;    }#endif}

四、timer_create创建及参数说明

从前面的分析看,看起来只要在一个线程内创建了定时器,并且使用wait等待,就会存在问题,其实并不是这样,从timer_create创建时的参数及做实际情况发现,只有在timer_create使用不当时,才会存在该问题。timer_create函数如下(timer_create的实现在bionic\libc\bionic\ Posix_timers.cpp):

int timer_create(clockid_t clock_id, sigevent* evp, timer_t* timer_id);

这里我们只关心第二个参数,第二个参数 struct sigevent 用来设置定时器到时时的通知方式。该数据结构如下:

struct sigevent {  int sigev_notify; /* Notification method */  int sigev_signo; /* Notification signal */  union sigval sigev_value; /* Data passed with notification */  void (*sigev_notify_function) (union sigval);  /* Function used for thread notification (SIGEV_THREAD) */  void *sigev_notify_attributes;  /* Attributes for notification thread (SIGEV_THREAD) */  pid_t sigev_notify_thread_id;  /* ID of thread to signal (SIGEV_THREAD_ID) */  };  

其中sigev_notify 表示通知方式,有如下几种:
通知方式 描述
SIGEV_NONE 定时器到期时不产生通知。。。
SIGEV_SIGNAL 定时器到期时将给进程投递一个信号,sigev_signo 可以用来指定使用什么信号。
SIGEV_THREAD 定时器到期时将启动新的线程进行需要的处理
SIGEV_THREAD_ID(仅针对 Linux) 定时器到期时将向指定线程发送信号。
■如果采用 SIGEV_NONE 方式,使用者必须调用timer_gettime 函数主动读取定时器已经走过的时间。类似轮询。
■如果采用 SIGEV_SIGNAL 方式,使用者可以选择使用什么信号,用 sigev_signo 表示信号值,比如 SIG_ALARM。
■如果使用 SIGEV_THREAD 方式,timer_create时会专门创建一个线程用于调用超时处理函数。需要设置 sigev_notify_function为超时调用函数入口;sigev_value 保存了传入 sigev_notify_function 的参数。sigev_notify_attributes 如果非空,则应该是一个指向 pthread_attr_t 的指针,用来设置线程的属性(比如 stack 大小,detach 状态等)。
■SIGEV_THREAD_ID 通常和 SIGEV_SIGNAL 联合使用,这样当 Timer 到期时,系统会向由 sigev_notify_thread_id 指定的线程发送信号,否则可能进程中的任意线程都可能收到该信号。这个选项是 Linux 对 POSIX 标准的扩展,目前主要是 GLibc 在实现 SIGEV_THREAD 的时候使用到,应用程序很少会需要用到这种模式。

从实际的情况看,当sigev_notify设置为SIGEV_SIGNAL时,当定时器超时就会唤醒调用timer_create创建定时器的线程,若该线程刚好在wait,就会出现前面分析的wait返回的情况。如果sigev_notify设置为SIGEV_THREAD,则在定时器超时后,只会唤醒专门创建的定时器处理函数线程,而不会唤醒调用timer_create创建定时器的线程,就不会存在前面分析的wait返回的情况。
五、总结
从分析看,虽然c库代码处理不够严谨,但问题的根源还是timer_create使用不当引起的。在使用timer_create时,不建议把sigev_notify设置为SIGEV_SIGNAL,除非能明确该线程只是进行定时器超时的处理。

0 0