Spark-Sql源码解析之六 PrepareForExecution: spark plan -> executed Plan

来源:互联网 发布:大学生分期购物软件 编辑:程序博客网 时间:2024/06/05 07:16

在SparkPlan中插入Shuffle的操作,如果前后2个SparkPlan的outputPartitioning不一样的话,则中间需要插入Shuffle的动作,比分说聚合函数,先局部聚合,然后全局聚合,局部聚合和全局聚合的分区规则是不一样的,中间需要进行一次Shuffle。

比方说sql语句:selectSUM(id) from test group by dev_chnid

其从逻辑计划转换为的物理计划如下:

Aggregate false, [dev_chnid#0], [CombineSum(PartialSum#45L) AS c0#43L] Aggregate true, [dev_chnid#0], [dev_chnid#0,SUM(id#17L) AS PartialSum#45L]  PhysicalRDD [dev_chnid#0,id#17L], MapPartitionsRDD[1]

其中Aggregate的第一个构造函数指明了其ChildDistribution,即规定了该SparkPlan的分区规则
case class Aggregate(    partial: Boolean,    groupingExpressions: Seq[Expression],    aggregateExpressions: Seq[NamedExpression],    child: SparkPlan)  extends UnaryNode {  override def requiredChildDistribution: List[Distribution] = {    if (partial) {      UnspecifiedDistribution :: Nil //当为true时,则对于Child的分区规则无所谓    } else {      if (groupingExpressions == Nil) {        AllTuples :: Nil      } else {        ClusteredDistribution(groupingExpressions) :: Nil //当为false时,必须按照聚合字段进行分区,此时为dev_chnid      }    }  }  ……}
因此如果按照以上SparkPlan执行的话,其流程图如下:

Aggregate true, [dev_chnid#0], [dev_chnid#0,SUM(id#17L)AS PartialSum#45L]的输出是没有规则的,Aggregate false, [dev_chnid#0],[CombineSum(PartialSum#45L) AS c0#43L]所要求的输入是必须按照group字段分区的,因此中间必然有个转变,将前一个Aggretae无规则的输出变为后一个Aggregate有规则的输入,这就是prepareForExecution所负责的事。

lazy val executedPlan: SparkPlan = prepareForExecution.execute(sparkPlan)protected[sql] val prepareForExecution = new RuleExecutor[SparkPlan] {  val batches =    Batch("Add exchange", Once, EnsureRequirements(self)) :: Nil}private[sql] case class EnsureRequirements(sqlContext: SQLContext) extends Rule[SparkPlan] {  // TODO: Determine the number of partitions.  def numPartitions: Int = sqlContext.conf.numShufflePartitions  def apply(plan: SparkPlan): SparkPlan = plan.transformUp {//先遍历孩子节点,然后遍历自己    case operator: SparkPlan =>      // True iff every child's outputPartitioning satisfies the corresponding      // required data distribution.      //ClusteredDistribution(groupingExpressions) :: Nil zip      def meetsRequirements: Boolean =//判断该SparkPlan的child的outputPartitioning是否满足其本身的要求        operator.requiredChildDistribution.zip(operator.children).forall {          case (required, child) =>            val valid = child.outputPartitioning.satisfies(required)            logInfo(              s"${if (valid) "Valid" else "Invalid"} distribution," +                s"required: $required current: ${child.outputPartitioning}")            valid        }      // True iff any of the children are incorrectly sorted.      def needsAnySort: Boolean =//判断该SparkPlan的child的outputOrdering是否满足其本身的要求        operator.requiredChildOrdering.zip(operator.children).exists {          case (required, child) => required.nonEmpty && required != child.outputOrdering        }      // True iff outputPartitionings of children are compatible with each other.      // It is possible that every child satisfies its required data distribution      // but two children have incompatible outputPartitionings. For example,      // A dataset is range partitioned by "a.asc" (RangePartitioning) and another      // dataset is hash partitioned by "a" (HashPartitioning). Tuples in these two      // datasets are both clustered by "a", but these two outputPartitionings are not      // compatible.      // TODO: ASSUMES TRANSITIVITY?      def compatible: Boolean =//当SparkPlan有多个child的时候,需要判断各个child之间的兼容性        !operator.children          .map(_.outputPartitioning)          .sliding(2)          .map {            case Seq(a) => true            case Seq(a, b) => a.compatibleWith(b)          }.exists(!_)      // Adds Exchange or Sort operators as required      def addOperatorsIfNecessary(          partitioning: Partitioning,          rowOrdering: Seq[SortOrder],          child: SparkPlan): SparkPlan = {        val needSort = rowOrdering.nonEmpty && child.outputOrdering != rowOrdering        val needsShuffle = child.outputPartitioning != partitioning        val canSortWithShuffle = Exchange.canSortWithShuffle(partitioning, rowOrdering)        if (needSort && needsShuffle && canSortWithShuffle) {          Exchange(partitioning, rowOrdering, child)        } else {          val withShuffle = if (needsShuffle) {            Exchange(partitioning, Nil, child)          } else {            child          }          val withSort = if (needSort) {            if (sqlContext.conf.externalSortEnabled) {              ExternalSort(rowOrdering, global = false, withShuffle)            } else {              Sort(rowOrdering, global = false, withShuffle)            }          } else {            withShuffle          }          withSort        }      }      if (meetsRequirements && compatible && !needsAnySort) {//如果满足,则不做任何事情        operator      } else {        // At least one child does not satisfies its required data distribution or        // at least one child's outputPartitioning is not compatible with another child's        // outputPartitioning. In this case, we need to add Exchange operators.        val requirements =          (operator.requiredChildDistribution, operator.requiredChildOrdering, operator.children)        val fixedChildren = requirements.zipped.map {//根据不同的要求产生一个中间的过渡的SparkPlan          case (AllTuples, rowOrdering, child) =>            addOperatorsIfNecessary(SinglePartition, rowOrdering, child)          case (ClusteredDistribution(clustering), rowOrdering, child) =>//SUM分组求和的时候需要对分组字段进行hash分区            addOperatorsIfNecessary(HashPartitioning(clustering, numPartitions), rowOrdering, child)          case (OrderedDistribution(ordering), rowOrdering, child) =>            addOperatorsIfNecessary(RangePartitioning(ordering, numPartitions), rowOrdering, child)          case (UnspecifiedDistribution, Seq(), child) =>            child          case (UnspecifiedDistribution, rowOrdering, child) =>            if (sqlContext.conf.externalSortEnabled) {              ExternalSort(rowOrdering, global = false, child)            } else {              Sort(rowOrdering, global = false, child)            }          case (dist, ordering, _) =>            sys.error(s"Don't know how to ensure $dist with ordering $ordering")        }        operator.withNewChildren(fixedChildren)      }  }}

因此经过prepareForExecution处理之后其SparkPlan变成了如下的形式:

Aggregate false, [dev_chnid#0], [CombineSum(PartialSum#45L) AS c0#43L] Exchange (HashPartitioning 200)  Aggregate true, [dev_chnid#0], [dev_chnid#0,SUM(id#17L) AS PartialSum#45L]   PhysicalRDD [dev_chnid#0,id#17L], MapPartitionsRDD[1]

其流程图如下:


通过Exchange将原有2个数据集的实际输出和所要求的输入保持一致。

0 0
原创粉丝点击