sklearn 源码解析 基本线性模型 岭回归 ridge.py(1)

来源:互联网 发布:电子乐器软件 编辑:程序博客网 时间:2024/04/29 13:33
对于前面已经提到的类及一些细节不再给出。对于稀疏矩阵的了解是必要的。
from abc import ABCMeta, abstractmethod
import warnings

import numpy as np
from scipy import linalg
from scipy import sparse
from scipy.sparse import linalg as sp_linalg

from .base import LinearClassifierMixin, LinearModel, _rescale_data
from .sag import sag_solver :是一种随机平均梯度下降式的求解岭回归与logistic回归的包,
  使用梯度下降法,
   这种算法收敛很快。
from ..base import RegressorMixin
from ..utils.extmath import safe_aparse_dot
from ..utils.extmath import row_norms: 行范数,不支持稀疏矩阵。
from ..utils import check_X_y
from ..utils import check_array :转换为ndarray类型。
from ..utils import check_consistent_length: 检查一个ndarray的list 是否所有元素第一个
   维度都相等。(i.e. same length)
from ..utils import column_or_1d: 特殊的拉直函数,接受类似feature形式的ndarray,
   即在第二个维度上只有1维,并将其按列拉直为以为数组。
from ..preprocessing import LabelBinarizer:
   对一对多问题将标签进行二值化。
from ..model_selection import GridSearchCV
from ..externsls import six
from ..metrics.scorer import check_scoring: 对能够进行返回score估计的模型,返回进行
   score计算的函数。


下面先不对具体的类,而是接口进行说明。(无组织架构)
sp_linalg.aslinearoperator: 将对象(ndarray, sparse, matrix an so on)转换为线性算子。
np.empty(shape): 返回相应shape的未初始化的ndarray.
sp_linalg.cg: 使用共轭梯度(Conjugate Gradient)法解线性系统。
sq_linalg.lsqr: lsqr :QR分解。
ndarray.flat:(。。。)
np.atleast_1d: 标量化为一维数组,高维保持。

def _solve_sparse_cg(X, y, alpha, max_iter = None, tol = 1e-3, verbose = 0): n_samples, n_features = X.shape X1 = sp_linalg.aslinearoperator(X) coefs = np.empty((y.shape[1], n_features)) if n_features > n_samples:  def create_mv(curr_alpha):   def _mv(x):    return X1.matvec(X1.rmatvec(x)) + curr_alpha * x   return _mv  else:  def create_mv(curr_alpha):   def _mv(curr_alpha):    return X1.rmatvec(X1.matvec(x)) + curr_alpha * x    return _mv  for i in range(y.shape[1]):  y_column = y[:, i]  mv = create_mv(alpha[i])  if n_features > n_samples:   C = sp_linalg.LinearOperator((n_samples, n_samples), matvec = mv, dtype = x.dtype)   coef, info = sp_linalg.cg(C, y_column, tol = tol)   coefs[i] = X1.rmatvec(coef)  else:   y_column = X1.rmatvec(y_column)   C = sp_linalg.LinearOperator((n_features, n_features), matvec = mv, dtype = x.dtype)   coefs[i], info = sp_linalg.cg(C, y_column, maxiter = max_iter, tol = tol)  if info < 0:   raise ValueError("Failed with error code %d" % info)  if max_iter is None and info > 0 and verbose:   warning.warn("sparse_cg did not coverge sfter %d iterations." % info) return coefs



_solve_sparse_cg:
 这里将在理论意义上求逆矩阵的过程转换为线性系统的解。
 所用到的线性算子仅仅是定义了对于矩阵的变换,matvec 向量乘积变换,
 rmatvec 共轭转置变换。
 函数分n_features 与n_samples的大小进行了分类,可以证明在取逆的情况
 下是相等的。(Kernel Ridge Regression.pdf)
 返回系数

def _solve_lsqr(X, y, alpha, max_iter = None, tol = 1e-3): n_samples, n_features = X.shape coefs = np.empty((y.shape[1], n_features)) n_iter = np.empty(y.shape[1], dtype = np.int32) sqrt_alpha = np.sqrt(alpha) for i in range(y.shape[1]):  y_column = y[:,i]  info = sp_linalg.lsqr(X, y_column, damp = sqrt_alpha[i], atol = tol, btol= tol, iter_lim = max_iter)  coefs[i] = info[0]  n_iter[i] = info[2] return coefs, n_iter



_solve_lsqr:
 返回线性系统的最小二乘解。

def _solve_cholesky(X, y, alpha): n_samples, n_features = X.shape n_targets = y.shape[1] A = safe_sparse_dot(X.T, X, dense_output = True) Xy = safe_sparse_dot(X.T, y, dense_output = True) one_alpha = np.array_equal(alpha, len(alpha) * [alpha[0]]) if one_alpha:  A.flat[::n_features + 1] ++ alpha[0]  return linalg.solve(A, Xy, sym_pos = True, overwrite_a = True) else:  coefs = np.empty([n_targets, n_features])  for coef, target , curr_alpha in zip(coefs, Xy.T, alpha):   A.flat[::n_features + 1] += curr_alpha    coef[:] = linalg.solve(A, target, sym_pos = True, overwrite_a = False).ravel()   A.flat[::n_features + 1] -= curr_alpha  return coefs



_solve_cholesky:
 由于在linalg.solve中选择了sym_pos为True,故指定了矩阵为对称正定矩阵,
 采用cholesky分解来解(分解为三角阵的内积)
 A.flat[::n_features + 1]实现了对对角元素的简写。

def _solve_cholesky_kernel(K, y, alpha, sample_weight = None, copy = False): n_samples = K.shape[0] n_targets = y.shape[1] if copy:  K = K.copy() alpha = np.atleast_1d(alpha) one_alpha = (alpha == alpha[0]).all() has_sw = isinstance(sample_weight, np.ndarray) or sample_weight not in [1.0, None] if has_sw:  sw = np.sqrt(np.atleast_1d(sample_weight))  y = y * sw[:, np.newaxis]  K *= np.outer(sw, sw) if one_alpha:  K.flat[::n_samples + 1] += alpha[0]  try:   dual_coef = linalg.solve(K, y, sym_pos = True, overwrite_a = False)  except np.linalg.LinAlgError:   warning.warn("Singular matrix in solving dual problem. using "    "least-squares solution instead.")   dual_coef = linalg.lstsq(K, y)[0]  K.flat[::n_samples + 1] -= alpha[0]  if has_sw:   dual_coef *= sw[:,np.newaxis]  return dual_coef else:  dual_coefs = np.empty([n_targets, n_samples])  for dual_coef, target, current_alpha in zip(dual_coefs, y.T, alpha):   K.flat[::n_samples + 1] += current_alpha    dual_coef[:] = linalg.solve(K, target, sym_pos = True, overwrite_a = False).ravel()   K.flat[::n_samples + 1] -= current_alpha  if has_sw:   dual_coefs *= sw[np.newaxis, :]  return dual_coefs.T 



_solve_cholesky_kernel:
 该函数允许对样本赋予权重,唯一与_solve_cholesky_kernel的不同是其使用的核
 矩阵需要给出。
 还提供了当解等式linalg.solve失效时使用linalg.lstsq求最小二乘解的方案。

def _solve_svd(X, y, alpha): U, s, Vt = linalg.svd(X, full_matrices = False) idx = s > 1e-15  s_nnz = s[idx][:,np.newaxis] UTy = np.dot(U.T, y) d = np.zeros((s.size, alpha.size)) d[idx] = s_nnz / (s_nnz ** 2 + alpha) d_UT_y = d * UTy return np.dot(Vt.T, d_UT_y).T



_solve_svd:
 这里仅仅是将上面_solve_cholesky_kernel的过程先将X进行奇异值分解,
 将奇异值推导的岭回归结果求解出来。
 这里以1e-15为阈值,砍掉了小的奇异值(与scipy.linalg.pinv求广义逆矩阵
 特征值阈值相同)

def ridge_regression(X, y, alpha, sample_weight = None, solver = 'auto',     max_iter = None, tol = ie-3, verbose = 0, random_state = None,     return_n_iter = False, return_intercept = False): if return_intercept and sparse.issparse(X) and solver != 'sag':  if solver != 'auto':   warning.warn("In Ridge, only 'sag' solver can currently fit the "    "intercept when X is sparse. Solver has been automatically "    "changed into 'sag'.")  solver = 'sag' if solver == 'sag':  X = check_array(X, accept_sparse = ['csr'],      dtype = np.float64, order = 'C')  y = check_array(y, dtype = np.float64, ensure_2d = False, order = 'F') else:  X = check_array(X, accept_sparse = ['csr', 'csc', 'coo'], dtype = np.float64)  y = check_array(y, dtype = 'numeric', ensure_2d = False) check_consistent_length(X, y) n_samples, n_features = X.shape  if y.ndim > 2:  raise ValueError("Target y has the wrong shape %s" % str(y,shape)) ravel = False  if y.ndim == 1:  y = y.reshpe(-1, 1)  ravel = True n_samples_, n_targets = y.shape  if n_samples != n_samples_:  raise ValueError("Number of samples in X and y does not correspond:"     " %d != %d" % (n_samples, n_samples_)) has_sw = sample_weight is not None  if solver == 'auto':  if not sparse.issparse(X) or has_sw:   solver = 'cholesky'  else:   solver = 'sparse_cg' elif solver == 'lsqr' and not hasattr(sp_linalg, 'lsqr'):  warning.warn("lsqr not avaliable on this machine, falling back to sparse_cg")  solver = 'sparse_cg' if has_sw:  if np.atleast_1d(sample_weight).ndim > 1:   raise ValueError("Sample weights must be 1D array or scalar")  if solver != 'sag':   X, y = _rescale_data(X, y, sample_weight) alpha = np.asarray(alpha).ravel() if alpha.size not in [1, n_targets]:  raise ValueError("Number of targets nad number of penalties "      "do nt correspond: %d != %d" % (alpha.size, n_targets)) if alpha.size == 1 and n_targets > 1:  alpha = np.repeat(alpha, n_targets) if solver not in ('sparse_cg', 'cholesky', 'svd', 'lsqr', 'sag'):  raise ValueError('Solver %s not understood' % solver) n_iter = None  if solver == 'sparse_cg':  coef = _solve_sparse_cg(X, y, alpha, max_iter, tol, verbose) elif solver == 'lsqr':  coef, n_iter = _solve_lsqr(X, y, alpha, max_iter, tol) elif solver == 'cholesky':  if n_features > n_samples:   K = safe_sparse_dot(X, X.T, dense_output = True)   try:    dual_coef = _solve_cholesky_kernel(K, y, alpha)    coef = safe_sparse_dot(X.T, dual_coef, dense_output = True).T    except linalg.LinAlgError:    solver = 'svd'  else:   try:    coef = _solve_cholesky(X, y, alpha)   except linalg.LinAlgError:    solver = 'svd' elif solver == 'sag':  max_squared_sum = row_norms(X, squared = True).max()  coef = np.empty([y.shape[1], n_features])  n_iter = np.empty(y.shape[1], dtype = np.int32)  intercept = np.zeros((y.shape[1],))  for i, (alpha_i, target) in enumerate(zip(alpha, y.T)):   init = {'coef': np.zeros((n_features + int(return_intercept), 1))}   coef_, n_iter_, _ = sag_solver(X, target.ravel(), sample_weight, 'squared',    alpha_i, max_iter, tol, verbose, random_state, False, max_squared_sum, init)   if return_intercept:    coef[i] = coef_[:-1]    intercept[i] = coef_[-1]   else:    coef[i] = coef_   n_iter[i] = n_iter_  if intercept.shape[0] == 1:   intercept = intercept[0]  coef = np.asarray(coef) if solver == 'svd':  if sparse.issparse(X):   raise TypeError('SVD solver does not support sparse inputs currently')  coef = _solve_svd(X, y, alpha) if ravel:  coef = coef.ravel()  if return_n_iter and return_intercept:  return coef, n_iter, intercept  elif return_intercept:  return coef, intercept  elif return_n_iter:  return coef, n_iter  else:  return coef



ridge_regression:
 这仅仅是对上面所提到的具体方法的统一接口。 

 岭回归当数据阵为sparse时仅能用随机梯度下降法"sag"求解。
 
 当solver选项为'auto'时,对非稀疏矩阵或有加权的情况,采用cholesky
 分解法解,否则使用sparse_cg

 n_features > n_samples 在cholesky分解下采用核方法(仅仅是不变的线性核)
 从这里可以看到当矩阵为奇异时采用svd奇异值分解求解。

 svd不支持稀疏矩阵求解。
 
 



 












0 0
原创粉丝点击