ART世界探险(17) - 中层中间代码MIR

来源:互联网 发布:linux tomcat怎么启动 编辑:程序博客网 时间:2024/04/30 00:58

ART世界探险(17) - 中层中间代码MIR

Dalvik字节码的指令格式

指令格式分类

Dalvik指令,根据需要的寄存器数目的不同,长度也有所不同。
如下面的结构所示,有下面的这些情况:

  enum Format {    k10x,  // op    k12x,  // op vA, vB    k11n,  // op vA, #+B    k11x,  // op vAA    k10t,  // op +AA    k20t,  // op +AAAA    k22x,  // op vAA, vBBBB    k21t,  // op vAA, +BBBB    k21s,  // op vAA, #+BBBB    k21h,  // op vAA, #+BBBB00000[00000000]    k21c,  // op vAA, thing@BBBB    k23x,  // op vAA, vBB, vCC    k22b,  // op vAA, vBB, #+CC    k22t,  // op vA, vB, +CCCC    k22s,  // op vA, vB, #+CCCC    k22c,  // op vA, vB, thing@CCCC    k32x,  // op vAAAA, vBBBB    k30t,  // op +AAAAAAAA    k31t,  // op vAA, +BBBBBBBB    k31i,  // op vAA, #+BBBBBBBB    k31c,  // op vAA, thing@BBBBBBBB    k35c,  // op {vC, vD, vE, vF, vG}, thing@BBBB (B: count, A: vG)    k3rc,  // op {vCCCC .. v(CCCC+AA-1)}, meth@BBBB    k51l,  // op vAA, #+BBBBBBBBBBBBBBBB  };

计算指令格式长度

MIRGraph的ParseInsn方法就是用来计算指令长度的。

/* * Parse an instruction, return the length of the instruction */int MIRGraph::ParseInsn(const uint16_t* code_ptr, MIR::DecodedInstruction* decoded_instruction) {  const Instruction* inst = Instruction::At(code_ptr);  decoded_instruction->opcode = inst->Opcode();  decoded_instruction->vA = inst->HasVRegA() ? inst->VRegA() : 0;  decoded_instruction->vB = inst->HasVRegB() ? inst->VRegB() : 0;  decoded_instruction->vB_wide = inst->HasWideVRegB() ? inst->WideVRegB() : 0;  decoded_instruction->vC = inst->HasVRegC() ?  inst->VRegC() : 0;  if (inst->HasVarArgs()) {    inst->GetVarArgs(decoded_instruction->arg);  }  return inst->SizeInCodeUnits();}

MIR中使用的Dalvik指令集

我们之前用了8讲的内容专门讲指令。
下面我们将这些指令的中间细节列一下,大家从下面的表中可以查到每一条指令的格式。

const uint64_t MIRGraph::oat_data_flow_attributes_[kMirOpLast] = {  // 00 NOP  DF_NOP,  // 01 MOVE vA, vB  DF_DA | DF_UB | DF_IS_MOVE,  // 02 MOVE_FROM16 vAA, vBBBB  DF_DA | DF_UB | DF_IS_MOVE,  // 03 MOVE_16 vAAAA, vBBBB  DF_DA | DF_UB | DF_IS_MOVE,  // 04 MOVE_WIDE vA, vB  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE,  // 05 MOVE_WIDE_FROM16 vAA, vBBBB  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE,  // 06 MOVE_WIDE_16 vAAAA, vBBBB  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE,  // 07 MOVE_OBJECT vA, vB  DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B,  // 08 MOVE_OBJECT_FROM16 vAA, vBBBB  DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B,  // 09 MOVE_OBJECT_16 vAAAA, vBBBB  DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B,  // 0A MOVE_RESULT vAA  DF_DA,  // 0B MOVE_RESULT_WIDE vAA  DF_DA | DF_A_WIDE,  // 0C MOVE_RESULT_OBJECT vAA  DF_DA | DF_REF_A,  // 0D MOVE_EXCEPTION vAA  DF_DA | DF_REF_A | DF_NON_NULL_DST,  // 0E RETURN_VOID  DF_NOP,  // 0F RETURN vAA  DF_UA,  // 10 RETURN_WIDE vAA  DF_UA | DF_A_WIDE,  // 11 RETURN_OBJECT vAA  DF_UA | DF_REF_A,  // 12 CONST_4 vA, #+B  DF_DA | DF_SETS_CONST,  // 13 CONST_16 vAA, #+BBBB  DF_DA | DF_SETS_CONST,  // 14 CONST vAA, #+BBBBBBBB  DF_DA | DF_SETS_CONST,  // 15 CONST_HIGH16 VAA, #+BBBB0000  DF_DA | DF_SETS_CONST,  // 16 CONST_WIDE_16 vAA, #+BBBB  DF_DA | DF_A_WIDE | DF_SETS_CONST,  // 17 CONST_WIDE_32 vAA, #+BBBBBBBB  DF_DA | DF_A_WIDE | DF_SETS_CONST,  // 18 CONST_WIDE vAA, #+BBBBBBBBBBBBBBBB  DF_DA | DF_A_WIDE | DF_SETS_CONST,  // 19 CONST_WIDE_HIGH16 vAA, #+BBBB000000000000  DF_DA | DF_A_WIDE | DF_SETS_CONST,  // 1A CONST_STRING vAA, string@BBBB  DF_DA | DF_REF_A | DF_NON_NULL_DST,  // 1B CONST_STRING_JUMBO vAA, string@BBBBBBBB  DF_DA | DF_REF_A | DF_NON_NULL_DST,  // 1C CONST_CLASS vAA, type@BBBB  DF_DA | DF_REF_A | DF_NON_NULL_DST,  // 1D MONITOR_ENTER vAA  DF_UA | DF_NULL_CHK_A | DF_REF_A,  // 1E MONITOR_EXIT vAA  DF_UA | DF_NULL_CHK_A | DF_REF_A,  // 1F CHK_CAST vAA, type@BBBB  DF_UA | DF_REF_A | DF_CHK_CAST | DF_UMS,  // 20 INSTANCE_OF vA, vB, type@CCCC  DF_DA | DF_UB | DF_CORE_A | DF_REF_B | DF_UMS,  // 21 ARRAY_LENGTH vA, vB  DF_DA | DF_UB | DF_NULL_CHK_B | DF_CORE_A | DF_REF_B,  // 22 NEW_INSTANCE vAA, type@BBBB  DF_DA | DF_NON_NULL_DST | DF_REF_A | DF_UMS,  // 23 NEW_ARRAY vA, vB, type@CCCC  DF_DA | DF_UB | DF_NON_NULL_DST | DF_REF_A | DF_CORE_B | DF_UMS,  // 24 FILLED_NEW_ARRAY {vD, vE, vF, vG, vA}  DF_FORMAT_35C | DF_NON_NULL_RET | DF_UMS,  // 25 FILLED_NEW_ARRAY_RANGE {vCCCC .. vNNNN}, type@BBBB  DF_FORMAT_3RC | DF_NON_NULL_RET | DF_UMS,  // 26 FILL_ARRAY_DATA vAA, +BBBBBBBB  DF_UA | DF_REF_A | DF_UMS,  // 27 THROW vAA  DF_UA | DF_REF_A | DF_UMS,  // 28 GOTO  DF_NOP,  // 29 GOTO_16  DF_NOP,  // 2A GOTO_32  DF_NOP,  // 2B PACKED_SWITCH vAA, +BBBBBBBB  DF_UA | DF_CORE_A,  // 2C SPARSE_SWITCH vAA, +BBBBBBBB  DF_UA | DF_CORE_A,  // 2D CMPL_FLOAT vAA, vBB, vCC  DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C | DF_CORE_A,  // 2E CMPG_FLOAT vAA, vBB, vCC  DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C | DF_CORE_A,  // 2F CMPL_DOUBLE vAA, vBB, vCC  DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_B | DF_FP_C | DF_CORE_A,  // 30 CMPG_DOUBLE vAA, vBB, vCC  DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_B | DF_FP_C | DF_CORE_A,  // 31 CMP_LONG vAA, vBB, vCC  DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,  // 32 IF_EQ vA, vB, +CCCC  DF_UA | DF_UB | DF_SAME_TYPE_AB,  // 33 IF_NE vA, vB, +CCCC  DF_UA | DF_UB | DF_SAME_TYPE_AB,  // 34 IF_LT vA, vB, +CCCC  DF_UA | DF_UB | DF_SAME_TYPE_AB,  // 35 IF_GE vA, vB, +CCCC  DF_UA | DF_UB | DF_SAME_TYPE_AB,  // 36 IF_GT vA, vB, +CCCC  DF_UA | DF_UB | DF_SAME_TYPE_AB,  // 37 IF_LE vA, vB, +CCCC  DF_UA | DF_UB | DF_SAME_TYPE_AB,  // 38 IF_EQZ vAA, +BBBB  DF_UA,  // 39 IF_NEZ vAA, +BBBB  DF_UA,  // 3A IF_LTZ vAA, +BBBB  DF_UA,  // 3B IF_GEZ vAA, +BBBB  DF_UA,  // 3C IF_GTZ vAA, +BBBB  DF_UA,  // 3D IF_LEZ vAA, +BBBB  DF_UA,  // 3E UNUSED_3E  DF_NOP,  // 3F UNUSED_3F  DF_NOP,  // 40 UNUSED_40  DF_NOP,  // 41 UNUSED_41  DF_NOP,  // 42 UNUSED_42  DF_NOP,  // 43 UNUSED_43  DF_NOP,  // 44 AGET vAA, vBB, vCC  DF_DA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,  // 45 AGET_WIDE vAA, vBB, vCC  DF_DA | DF_A_WIDE | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,  // 46 AGET_OBJECT vAA, vBB, vCC  DF_DA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_A | DF_REF_B | DF_CORE_C | DF_LVN,  // 47 AGET_BOOLEAN vAA, vBB, vCC  DF_DA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,  // 48 AGET_BYTE vAA, vBB, vCC  DF_DA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,  // 49 AGET_CHAR vAA, vBB, vCC  DF_DA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,  // 4A AGET_SHORT vAA, vBB, vCC  DF_DA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,  // 4B APUT vAA, vBB, vCC  DF_UA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,  // 4C APUT_WIDE vAA, vBB, vCC  DF_UA | DF_A_WIDE | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,  // 4D APUT_OBJECT vAA, vBB, vCC  DF_UA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_A | DF_REF_B | DF_CORE_C | DF_LVN,  // 4E APUT_BOOLEAN vAA, vBB, vCC  DF_UA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,  // 4F APUT_BYTE vAA, vBB, vCC  DF_UA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,  // 50 APUT_CHAR vAA, vBB, vCC  DF_UA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,  // 51 APUT_SHORT vAA, vBB, vCC  DF_UA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,  // 52 IGET vA, vB, field@CCCC  DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,  // 53 IGET_WIDE vA, vB, field@CCCC  DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,  // 54 IGET_OBJECT vA, vB, field@CCCC  DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN,  // 55 IGET_BOOLEAN vA, vB, field@CCCC  DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,  // 56 IGET_BYTE vA, vB, field@CCCC  DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,  // 57 IGET_CHAR vA, vB, field@CCCC  DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,  // 58 IGET_SHORT vA, vB, field@CCCC  DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,  // 59 IPUT vA, vB, field@CCCC  DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,  // 5A IPUT_WIDE vA, vB, field@CCCC  DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,  // 5B IPUT_OBJECT vA, vB, field@CCCC  DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN,  // 5C IPUT_BOOLEAN vA, vB, field@CCCC  DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,  // 5D IPUT_BYTE vA, vB, field@CCCC  DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,  // 5E IPUT_CHAR vA, vB, field@CCCC  DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,  // 5F IPUT_SHORT vA, vB, field@CCCC  DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,  // 60 SGET vAA, field@BBBB  DF_DA | DF_SFIELD | DF_CLINIT | DF_UMS,  // 61 SGET_WIDE vAA, field@BBBB  DF_DA | DF_A_WIDE | DF_SFIELD | DF_CLINIT | DF_UMS,  // 62 SGET_OBJECT vAA, field@BBBB  DF_DA | DF_REF_A | DF_SFIELD | DF_CLINIT | DF_UMS,  // 63 SGET_BOOLEAN vAA, field@BBBB  DF_DA | DF_SFIELD | DF_CLINIT | DF_UMS,  // 64 SGET_BYTE vAA, field@BBBB  DF_DA | DF_SFIELD | DF_CLINIT | DF_UMS,  // 65 SGET_CHAR vAA, field@BBBB  DF_DA | DF_SFIELD | DF_CLINIT | DF_UMS,  // 66 SGET_SHORT vAA, field@BBBB  DF_DA | DF_SFIELD | DF_CLINIT | DF_UMS,  // 67 SPUT vAA, field@BBBB  DF_UA | DF_SFIELD | DF_CLINIT | DF_UMS,  // 68 SPUT_WIDE vAA, field@BBBB  DF_UA | DF_A_WIDE | DF_SFIELD | DF_CLINIT | DF_UMS,  // 69 SPUT_OBJECT vAA, field@BBBB  DF_UA | DF_REF_A | DF_SFIELD | DF_CLINIT | DF_UMS,  // 6A SPUT_BOOLEAN vAA, field@BBBB  DF_UA | DF_SFIELD | DF_CLINIT | DF_UMS,  // 6B SPUT_BYTE vAA, field@BBBB  DF_UA | DF_SFIELD | DF_CLINIT | DF_UMS,  // 6C SPUT_CHAR vAA, field@BBBB  DF_UA | DF_SFIELD | DF_CLINIT | DF_UMS,  // 6D SPUT_SHORT vAA, field@BBBB  DF_UA | DF_SFIELD | DF_CLINIT | DF_UMS,  // 6E INVOKE_VIRTUAL {vD, vE, vF, vG, vA}  DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,  // 6F INVOKE_SUPER {vD, vE, vF, vG, vA}  DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,  // 70 INVOKE_DIRECT {vD, vE, vF, vG, vA}  DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,  // 71 INVOKE_STATIC {vD, vE, vF, vG, vA}  DF_FORMAT_35C | DF_CLINIT | DF_UMS,  // 72 INVOKE_INTERFACE {vD, vE, vF, vG, vA}  DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,  // 73 RETURN_VOID_NO_BARRIER  DF_NOP,  // 74 INVOKE_VIRTUAL_RANGE {vCCCC .. vNNNN}  DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,  // 75 INVOKE_SUPER_RANGE {vCCCC .. vNNNN}  DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,  // 76 INVOKE_DIRECT_RANGE {vCCCC .. vNNNN}  DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,  // 77 INVOKE_STATIC_RANGE {vCCCC .. vNNNN}  DF_FORMAT_3RC | DF_CLINIT | DF_UMS,  // 78 INVOKE_INTERFACE_RANGE {vCCCC .. vNNNN}  DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,  // 79 UNUSED_79  DF_NOP,  // 7A UNUSED_7A  DF_NOP,  // 7B NEG_INT vA, vB  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,  // 7C NOT_INT vA, vB  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,  // 7D NEG_LONG vA, vB  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,  // 7E NOT_LONG vA, vB  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,  // 7F NEG_FLOAT vA, vB  DF_DA | DF_UB | DF_FP_A | DF_FP_B,  // 80 NEG_DOUBLE vA, vB  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,  // 81 INT_TO_LONG vA, vB  DF_DA | DF_A_WIDE | DF_UB | DF_CORE_A | DF_CORE_B,  // 82 INT_TO_FLOAT vA, vB  DF_DA | DF_UB | DF_FP_A | DF_CORE_B,  // 83 INT_TO_DOUBLE vA, vB  DF_DA | DF_A_WIDE | DF_UB | DF_FP_A | DF_CORE_B,  // 84 LONG_TO_INT vA, vB  DF_DA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,  // 85 LONG_TO_FLOAT vA, vB  DF_DA | DF_UB | DF_B_WIDE | DF_FP_A | DF_CORE_B,  // 86 LONG_TO_DOUBLE vA, vB  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_CORE_B,  // 87 FLOAT_TO_INT vA, vB  DF_DA | DF_UB | DF_FP_B | DF_CORE_A,  // 88 FLOAT_TO_LONG vA, vB  DF_DA | DF_A_WIDE | DF_UB | DF_FP_B | DF_CORE_A,  // 89 FLOAT_TO_DOUBLE vA, vB  DF_DA | DF_A_WIDE | DF_UB | DF_FP_A | DF_FP_B,  // 8A DOUBLE_TO_INT vA, vB  DF_DA | DF_UB | DF_B_WIDE | DF_FP_B | DF_CORE_A,  // 8B DOUBLE_TO_LONG vA, vB  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_B | DF_CORE_A,  // 8C DOUBLE_TO_FLOAT vA, vB  DF_DA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,  // 8D INT_TO_BYTE vA, vB  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,  // 8E INT_TO_CHAR vA, vB  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,  // 8F INT_TO_SHORT vA, vB  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,  // 90 ADD_INT vAA, vBB, vCC  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,  // 91 SUB_INT vAA, vBB, vCC  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,  // 92 MUL_INT vAA, vBB, vCC  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,  // 93 DIV_INT vAA, vBB, vCC  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,  // 94 REM_INT vAA, vBB, vCC  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,  // 95 AND_INT vAA, vBB, vCC  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,  // 96 OR_INT vAA, vBB, vCC  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,  // 97 XOR_INT vAA, vBB, vCC  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,  // 98 SHL_INT vAA, vBB, vCC  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,  // 99 SHR_INT vAA, vBB, vCC  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,  // 9A USHR_INT vAA, vBB, vCC  DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,  // 9B ADD_LONG vAA, vBB, vCC  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,  // 9C SUB_LONG vAA, vBB, vCC  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,  // 9D MUL_LONG vAA, vBB, vCC  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,  // 9E DIV_LONG vAA, vBB, vCC  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,  // 9F REM_LONG vAA, vBB, vCC  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,  // A0 AND_LONG vAA, vBB, vCC  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,  // A1 OR_LONG vAA, vBB, vCC  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,  // A2 XOR_LONG vAA, vBB, vCC  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,  // A3 SHL_LONG vAA, vBB, vCC  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,  // A4 SHR_LONG vAA, vBB, vCC  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,  // A5 USHR_LONG vAA, vBB, vCC  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,  // A6 ADD_FLOAT vAA, vBB, vCC  DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,  // A7 SUB_FLOAT vAA, vBB, vCC  DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,  // A8 MUL_FLOAT vAA, vBB, vCC  DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,  // A9 DIV_FLOAT vAA, vBB, vCC  DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,  // AA REM_FLOAT vAA, vBB, vCC  DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,  // AB ADD_DOUBLE vAA, vBB, vCC  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,  // AC SUB_DOUBLE vAA, vBB, vCC  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,  // AD MUL_DOUBLE vAA, vBB, vCC  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,  // AE DIV_DOUBLE vAA, vBB, vCC  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,  // AF REM_DOUBLE vAA, vBB, vCC  DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,  // B0 ADD_INT_2ADDR vA, vB  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,  // B1 SUB_INT_2ADDR vA, vB  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,  // B2 MUL_INT_2ADDR vA, vB  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,  // B3 DIV_INT_2ADDR vA, vB  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,  // B4 REM_INT_2ADDR vA, vB  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,  // B5 AND_INT_2ADDR vA, vB  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,  // B6 OR_INT_2ADDR vA, vB  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,  // B7 XOR_INT_2ADDR vA, vB  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,  // B8 SHL_INT_2ADDR vA, vB  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,  // B9 SHR_INT_2ADDR vA, vB  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,  // BA USHR_INT_2ADDR vA, vB  DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,  // BB ADD_LONG_2ADDR vA, vB  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,  // BC SUB_LONG_2ADDR vA, vB  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,  // BD MUL_LONG_2ADDR vA, vB  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,  // BE DIV_LONG_2ADDR vA, vB  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,  // BF REM_LONG_2ADDR vA, vB  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,  // C0 AND_LONG_2ADDR vA, vB  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,  // C1 OR_LONG_2ADDR vA, vB  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,  // C2 XOR_LONG_2ADDR vA, vB  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,  // C3 SHL_LONG_2ADDR vA, vB  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,  // C4 SHR_LONG_2ADDR vA, vB  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,  // C5 USHR_LONG_2ADDR vA, vB  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,  // C6 ADD_FLOAT_2ADDR vA, vB  DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,  // C7 SUB_FLOAT_2ADDR vA, vB  DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,  // C8 MUL_FLOAT_2ADDR vA, vB  DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,  // C9 DIV_FLOAT_2ADDR vA, vB  DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,  // CA REM_FLOAT_2ADDR vA, vB  DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,  // CB ADD_DOUBLE_2ADDR vA, vB  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,  // CC SUB_DOUBLE_2ADDR vA, vB  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,  // CD MUL_DOUBLE_2ADDR vA, vB  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,  // CE DIV_DOUBLE_2ADDR vA, vB  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,  // CF REM_DOUBLE_2ADDR vA, vB  DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,  // D0 ADD_INT_LIT16 vA, vB, #+CCCC  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,  // D1 RSUB_INT vA, vB, #+CCCC  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,  // D2 MUL_INT_LIT16 vA, vB, #+CCCC  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,  // D3 DIV_INT_LIT16 vA, vB, #+CCCC  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,  // D4 REM_INT_LIT16 vA, vB, #+CCCC  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,  // D5 AND_INT_LIT16 vA, vB, #+CCCC  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,  // D6 OR_INT_LIT16 vA, vB, #+CCCC  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,  // D7 XOR_INT_LIT16 vA, vB, #+CCCC  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,  // D8 ADD_INT_LIT8 vAA, vBB, #+CC  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,  // D9 RSUB_INT_LIT8 vAA, vBB, #+CC  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,  // DA MUL_INT_LIT8 vAA, vBB, #+CC  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,  // DB DIV_INT_LIT8 vAA, vBB, #+CC  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,  // DC REM_INT_LIT8 vAA, vBB, #+CC  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,  // DD AND_INT_LIT8 vAA, vBB, #+CC  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,  // DE OR_INT_LIT8 vAA, vBB, #+CC  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,  // DF XOR_INT_LIT8 vAA, vBB, #+CC  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,  // E0 SHL_INT_LIT8 vAA, vBB, #+CC  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,  // E1 SHR_INT_LIT8 vAA, vBB, #+CC  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,  // E2 USHR_INT_LIT8 vAA, vBB, #+CC  DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,  // E3 IGET_QUICK  DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,  // E4 IGET_WIDE_QUICK  DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,  // E5 IGET_OBJECT_QUICK  DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN,  // E6 IPUT_QUICK  DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,  // E7 IPUT_WIDE_QUICK  DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,  // E8 IPUT_OBJECT_QUICK  DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN,  // E9 INVOKE_VIRTUAL_QUICK  DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,  // EA INVOKE_VIRTUAL_RANGE_QUICK  DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,  // EB IPUT_BOOLEAN_QUICK vA, vB, index  DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,  // EC IPUT_BYTE_QUICK vA, vB, index  DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,  // ED IPUT_CHAR_QUICK vA, vB, index  DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,  // EE IPUT_SHORT_QUICK vA, vB, index  DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,  // EF IGET_BOOLEAN_QUICK vA, vB, index  DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,  // F0 IGET_BYTE_QUICK vA, vB, index  DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,  // F1 IGET_CHAR_QUICK vA, vB, index  DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,  // F2 IGET_SHORT_QUICK vA, vB, index  DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,  // F3 UNUSED_F3  DF_NOP,  // F4 UNUSED_F4  DF_NOP,  // F5 UNUSED_F5  DF_NOP,  // F6 UNUSED_F6  DF_NOP,  // F7 UNUSED_F7  DF_NOP,  // F8 UNUSED_F8  DF_NOP,  // F9 UNUSED_F9  DF_NOP,  // FA UNUSED_FA  DF_NOP,  // FB UNUSED_FB  DF_NOP,  // FC UNUSED_FC  DF_NOP,  // FD UNUSED_FD  DF_NOP,  // FE UNUSED_FE  DF_NOP,  // FF UNUSED_FF  DF_NOP,  // Beginning of extended MIR opcodes  // 100 MIR_PHI  DF_DA | DF_NULL_TRANSFER_N,  // 101 MIR_COPY  DF_DA | DF_UB | DF_IS_MOVE,  // 102 MIR_FUSED_CMPL_FLOAT  DF_UA | DF_UB | DF_FP_A | DF_FP_B,  // 103 MIR_FUSED_CMPG_FLOAT  DF_UA | DF_UB | DF_FP_A | DF_FP_B,  // 104 MIR_FUSED_CMPL_DOUBLE  DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,  // 105 MIR_FUSED_CMPG_DOUBLE  DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,  // 106 MIR_FUSED_CMP_LONG  DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,  // 107 MIR_NOP  DF_NOP,  // 108 MIR_NULL_CHECK  DF_UA | DF_REF_A | DF_NULL_CHK_A | DF_LVN,  // 109 MIR_RANGE_CHECK  0,  // 10A MIR_DIV_ZERO_CHECK  0,  // 10B MIR_CHECK  0,  // 10D MIR_SELECT  DF_DA | DF_UB,  // 10E MirOpConstVector  0,  // 10F MirOpMoveVector  0,  // 110 MirOpPackedMultiply  0,  // 111 MirOpPackedAddition  0,  // 112 MirOpPackedSubtract  0,  // 113 MirOpPackedShiftLeft  0,  // 114 MirOpPackedSignedShiftRight  0,  // 115 MirOpPackedUnsignedShiftRight  0,  // 116 MirOpPackedAnd  0,  // 117 MirOpPackedOr  0,  // 118 MirOpPackedXor  0,  // 119 MirOpPackedAddReduce  DF_FORMAT_EXTENDED,  // 11A MirOpPackedReduce  DF_FORMAT_EXTENDED,  // 11B MirOpPackedSet  DF_FORMAT_EXTENDED,  // 11C MirOpReserveVectorRegisters  0,  // 11D MirOpReturnVectorRegisters  0,  // 11E MirOpMemBarrier  0,  // 11F MirOpPackedArrayGet  DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,  // 120 MirOpPackedArrayPut  DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,  // 121 MirOpMaddInt  DF_FORMAT_EXTENDED,  // 122 MirOpMsubInt  DF_FORMAT_EXTENDED,  // 123 MirOpMaddLong  DF_FORMAT_EXTENDED,  // 124 MirOpMsubLong  DF_FORMAT_EXTENDED,};

MIR

生成一条MIR

// Allocate a new MIR.MIR* MIRGraph::NewMIR() {  MIR* mir = new (arena_) MIR();  return mir;}

代码块 - BasicBlock

我们都知道,Java中的代码是由一个个代码块所组成的。

代码块的类型 - BBType

enum BBType {  kNullBlock,  kEntryBlock,  kDalvikByteCode,  kExitBlock,  kExceptionHandling,  kDead,};

代码块列表类型

enum BlockListType {  kNotUsed = 0,  kCatch,  kPackedSwitch,  kSparseSwitch,};

基本块的数据流

// Dataflow attributes of a basic block.struct BasicBlockDataFlow {  ArenaBitVector* use_v;  ArenaBitVector* def_v;  ArenaBitVector* live_in_v;  int32_t* vreg_to_ssa_map_exit;};

基本代码块的创建 - CreateNewBB方法

  1. 首先根据block_list_中已有的基本代码块的数目生成新的BasicBlockId。
  2. 然后调用NewMemBB去真正分配空间。
  3. 生成之后,再压到block_list_向量中。
BasicBlock* MIRGraph::CreateNewBB(BBType block_type) {  BasicBlockId id = static_cast<BasicBlockId>(block_list_.size());  BasicBlock* res = NewMemBB(block_type, id);  block_list_.push_back(res);  return res;}

分配一个基本代码块

主要是预留出相应的空间来。
另外还要到block_id_map_中备个案。

// Allocate a new basic block.BasicBlock* MIRGraph::NewMemBB(BBType block_type, int block_id) {  BasicBlock* bb = new (arena_) BasicBlock(block_id, block_type, arena_);  // TUNING: better estimate of the exit block predecessors?  bb->predecessors.reserve((block_type == kExitBlock) ? 2048 : 2);  block_id_map_.Put(block_id, block_id);  return bb;}

代码项

Dex文件中的代码项,用CodeItem结构体来表示:

  struct CodeItem {    uint16_t registers_size_;    uint16_t ins_size_;    uint16_t outs_size_;    uint16_t tries_size_;    uint32_t debug_info_off_;  // file offset to debug info stream    uint32_t insns_size_in_code_units_;  // size of the insns array, in 2 byte code units    uint16_t insns_[1];   private:    DISALLOW_COPY_AND_ASSIGN(CodeItem);  };

调用类型

调用方法的类型有以下几种:
* kStatic:调用静态方法
* kDirect:调用普通方法
* kVirtual:调用虚方法
* kSuper:调用父类方法
* kInterface:调用实现的接口中的方法

enum InvokeType {  kStatic,     // <<static>>  kDirect,     // <<direct>>  kVirtual,    // <<virtual>>  kSuper,      // <<super>>  kInterface,  // <<interface>>  kMaxInvokeType = kInterface};

最后,我们上一张MIRGraph的大图. 后面几节我们主要都是跟它打交道了

MIRGraph

0 0
原创粉丝点击