协方差和马氏距离的理解

来源:互联网 发布:淘宝店铺如何运营方案 编辑:程序博客网 时间:2024/04/28 20:00

http://blog.csdn.net/lanbing510/article/details/8758651

整理了几篇看着不错的博客。

统计学的基本概念

方差:很显然,均值描述的是样本集合的中间点,它告诉我们的信息是很有限的,而标准差给我们描述的则是样本集合的各个样本点到均值的距离之平均。以这两个集合为例,[0,8,12,20]和[8,9,11,12],两个集合的均值都是10,但显然两个集合差别是很大的,计算两者的标准差,前者是8.3,后者是1.8,显然后者较为集中,故其标准差小一些,标准差描述的就是这种“散布度”。之所以除以n-1而不是除以n,是因为这样能使我们以较小的样本集更好的逼近总体的标准差,即统计上所谓的“无偏估计”。而方差则仅仅是标准差的平方。

为什么需要协方差?

上面几个统计量看似已经描述的差不多了,但我们应该注意到,标准差和方差一般是用来描述一维数据的,但现实生活我们常常遇到含有多维数据的数据集,最简单的大家上学时免不了要统计多个学科的考试成绩。面对这样的数据集,我们当然可以按照每一维独立的计算其方差,但是通常我们还想了解更多,比如,一个男孩子的猥琐程度跟他受女孩子欢迎程度是否存在一些联系啊,嘿嘿~协方差就是这样一种用来度量两个随机变量关系的统计量

协方差的结果有什么意义呢?如果结果为正值,则说明两者是正相关的(从协方差可以引出“相关系数”的定义),也就是说一个人越猥琐就越受女孩子欢迎,嘿嘿,那必须的~结果为负值就说明负相关的,越猥琐女孩子越讨厌,可能吗?如果为0,也是就是统计上说的“相互独立”。

协方差多了就是协方差矩阵

上一节提到的猥琐和受欢迎的问题是典型二维问题,而协方差也只能处理二维问题,那维数多了自然就需要计算多个协方差那自然而然的我们会想到使用矩阵来组织这些数据。

关于协方差矩阵,下面是wiki上的介绍:

统计学概率论中,协方差矩阵(或称共变异矩阵)是一个矩阵,其每个元素是各个向量元素之间的方差。这是从标量随机变量到高维度随机向量的自然推广。

假设X是以n个标量随机变量组成的列向量

X = \begin{bmatrix}X_1 \\ \vdots \\ X_n \end{bmatrix}

并且μi 是其第i个元素的期望值, 即, μi = E(Xi)。协方差矩阵被定义的第i,j项是如下协方差:

 \Sigma_{ij} = \mathrm{cov}(X_i, X_j) = \mathrm{E}\begin{bmatrix} (X_i - \mu_i)(X_j - \mu_j) \end{bmatrix}

即:

 \Sigma=\mathrm{E} \left[ \left( \textbf{X} - \mathrm{E}[\textbf{X}] \right) \left( \textbf{X} - \mathrm{E}[\textbf{X}] \right)^\top \right]
 = \begin{bmatrix} \mathrm{E}[(X_1 - \mu_1)(X_1 - \mu_1)] & \mathrm{E}[(X_1 - \mu_1)(X_2 - \mu_2)] & \cdots & \mathrm{E}[(X_1 - \mu_1)(X_n - \mu_n)] \\ \ \mathrm{E}[(X_2 - \mu_2)(X_1 - \mu_1)] & \mathrm{E}[(X_2 - \mu_2)(X_2 - \mu_2)] & \cdots & \mathrm{E}[(X_2 - \mu_2)(X_n - \mu_n)] \\ \ \vdots & \vdots & \ddots & \vdots \\ \ \mathrm{E}[(X_n - \mu_n)(X_1 - \mu_1)] & \mathrm{E}[(X_n - \mu_n)(X_2 - \mu_2)] & \cdots & \mathrm{E}[(X_n - \mu_n)(X_n - \mu_n)] \end{bmatrix}

矩阵中的第(i,j)个元素是XiXj的协方差。这个概念是对于标量随机变量方差的一般化推广。

尽管协方差矩阵很简单,可它却是很多领域里的非常有力的工具。它能导出一个变换矩阵,这个矩阵能使数据完全去相关(decorrelation)。从不同的角度看,也就是说能够找出一组最佳的基以紧凑的方式来表达数据。(完整的证明请参考瑞利商)。 这个方法在统计学中被称为主成分分析(principal components analysis),在图像处理中称为Karhunen-Loève 变换(KL-变换)。

 

马氏距离是由印度统计学家马哈拉诺比斯(P. C. Mahalanobis)提出的,表示数据的协方差距离。它是一种有效的计算两个未知样本集的相似度的方法。与欧氏距离不同的是它考虑到各种特性之间的联系(例如:一条关于身高的信息会带来一条关于体重的信息,因为两者是有关联的)并且是尺度无关的(scale-invariant),即独立于测量尺度。 对于一个均值为\mu = ( \mu_1, \mu_2, \mu_3, \dots , \mu_p )^T协方差矩阵为Σ的多变量向量x = ( x_1, x_2, x_3, \dots, x_p )^T,其马氏距离为

D_M(x) = \sqrt{(x - \mu)^T \Sigma^{-1} (x-\mu)}.\,

马氏距离也可以定义为两个服从同一分布并且其协方差矩阵为Σ的随机变量 \vec{x} \vec{y}的差异程度:

 d(\vec{x},\vec{y})=\sqrt{(\vec{x}-\vec{y})^T\Sigma^{-1} (\vec{x}-\vec{y})}.\,

如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧式距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离'.

 d(\vec{x},\vec{y})= \sqrt{\sum_{i=1}^p {(x_i - y_i)^2 \over \sigma_i^2}},

其中σi 是 xi 的标准差.


根据马氏距离的定义,可以得到它的几个特点如下:
p      两点之间的马氏距离与原始数据的测量单位无关。
p      标准化数据和中心化数据(即原始数据与均值之差)计算出的二点之间的马氏距离相同
p      可以排除变量之间的相关性的干扰。
   p      满足距离的四个基本公理:非负性、自反性、对称性和三角不等式。

注:现在不是太明白马氏距离的物理意义,协方差矩阵逆的作用是什么?本人直观理解是,协方差的逆起到了归一化的作用,比如当协方差是对角阵的时候,当lamuda越大的时候,其逆就越小,一定程度上归一化了不同变量间量纲的影响。烦请高手指点

欧氏马氏距离的优劣

马氏优缺点:
1)马氏距离的计算是建立在总体样本的基础上的,这一点可以从上述协方差矩阵的解释中可以得出,也就是说,如果拿同样的两个样本,放入两个不同的总体中,最后计算得出的两个样本间的马氏距离通常是不相同的,除非这两个总体的协方差矩阵碰巧相同;
2)在计算马氏距离过程中,要求总体样本数大于样本的维数,否则得到的总体样本协方差矩阵逆矩阵不存在,这种情况下,用欧式距离计算即可。
3)还有一种情况,满足了条件总体样本数大于样本的维数,但是协方差矩阵的逆矩阵仍然不存在,比如三个样本点(3,4),(5,6)和(7,8),这种情况是因为这三个样本在其所处的二维空间平面内共线。这种情况下,也采用欧式距离计算。
4)在实际应用中“总体样本数大于样本的维数”这个条件是很容易满足的,而所有样本点出现3)中所描述的情况是很少出现的,所以在绝大多数情况下,马氏距离是可以顺利计算的,但是马氏距离的计算是不稳定的,不稳定的来源是协方差矩阵,这也是马氏距离与欧式距离的最大差异之处。
优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关;由标准化数据和中心化数据(即原始数据与均值之差)计算出的二点之间的马氏距离相同。马氏距离还可以排除变量之间的相关性的干扰。缺点:它的缺点是夸大了变化微小的变量的作用。
如果用dij表示第i个样品和第j个样品之间的距离,那么对一切i,j和k,dij应该满足如下四个条件:
①当且仅当i=j时,dij=0
②dij>0
③dij=dji(对称性)
④dij≤dik+dkj(三角不等式)
显然,欧氏距离满足以上四个条件。满足以上条件的函数有多种,本节将要用到的马氏距离也是其中的一种。
第i个样品与第j个样品的马氏距离dij用下式计算:
dij =((x i 一x j)TS-1(x i一xj) )1/2(T、-1、1/2都是上标)
其中,T表示转置,x i 和x j分别为第i个和第j个样品的m个指标所组成的向量,S为样本协方差矩阵。

0 0