Fast rcnn and Faster rcnn 算法原理

来源:互联网 发布:nosql数据库的优点 编辑:程序博客网 时间:2024/05/01 08:30

转载:

http://blog.csdn.net/shenxiaolu1984/article/details/51036677

http://blog.csdn.net/shenxiaolu1984/article/details/51152614



Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE International Conference on Computer Vision. 2015.

继2014年的RCNN之后,Ross Girshick在15年推出Fast RCNN,构思精巧,流程更为紧凑,大幅提升了目标检测的速度。在Github上提供了源码。

同样使用最大规模的网络,Fast RCNN和RCNN相比,训练时间从84小时减少为9.5小时,测试时间从47秒减少为0.32秒。在PASCAL VOC 2007上的准确率相差无几,约在66%-67%之间.

思想

基础:RCNN

简单来说,RCNN使用以下四步实现目标检测: 
a. 在图像中确定约1000-2000个候选框 
b. 对于每个候选框内图像块,使用深度网络提取特征 
c. 对候选框中提取出的特征,使用分类器判别是否属于一个特定类 
d. 对于属于某一特征的候选框,用回归器进一步调整其位置 
更多细节可以参看这篇博客。

改进:Fast RCNN

Fast RCNN方法解决了RCNN方法三个问题:

问题一:测试时速度慢 
RCNN一张图像内候选框之间大量重叠,提取特征操作冗余。 
本文将整张图像归一化后直接送入深度网络。在邻接时,才加入候选框信息,在末尾的少数几层处理每个候选框。

问题二:训练时速度慢 
原因同上。 
在训练时,本文先将一张图像送入网络,紧接着送入从这幅图像上提取出的候选区域。这些候选区域的前几层特征不需要再重复计算。

问题三:训练所需空间大 
RCNN中独立的分类器和回归器需要大量特征作为训练样本。 
本文把类别判断和位置精调统一用深度网络实现,不再需要额外存储。

以下按次序介绍三个问题对应的解决方法。

特征提取网络

基本结构

图像归一化为224×224直接送入网络。

前五阶段是基础的conv+relu+pooling形式,在第五阶段结尾,输入P个候选区域(图像序号×1+几何位置×4,序号用于训练)?。 
这里写图片描述

注:文中给出了大中小三种网络,此处示出最大的一种。三种网络基本结构相似,仅conv+relu层数有差别,或者增删了norm层。

roi_pool层的测试(forward)

roi_pool层将每个候选区域均匀分成M×N块,对每块进行max pooling。将特征图上大小不一的候选区域转变为大小统一的数据,送入下一层。 
这里写图片描述

roi_pool层的训练(backward)

首先考虑普通max pooling层。设xi为输入层的节点,yj为输出层的节点。 

Lxi={0Lyjδ(i,j)=falseδ(i,j)=true

其中判决函数δ(i,j)表示i节点是否被j节点选为最大值输出。不被选中有两种可能:xi不在yj范围内,或者xi不是最大值。

对于roi max pooling,一个输入节点可能和多个输出节点相连。设xi为输入层的节点,yrj为第r个候选区域的第j个输出节点。 
这里写图片描述 

Lxi=Σr,jδ(i,r,j)Lyrj

判决函数δ(i,r,j)表示i节点是否被候选区域r的第j个节点选为最大值输出。代价对于xi的梯度等于所有相关的后一层梯度之和。

网络参数训练

参数初始化

网络除去末尾部分如下图,在ImageNet上训练1000类分类器。结果参数作为相应层的初始化参数。 
这里写图片描述 
其余参数随机初始化。

分层数据

在调优训练时,每一个mini-batch中首先加入N张完整图片,而后加入从N张图片中选取的R个候选框。这R个候选框可以复用N张图片前5个阶段的网络特征。 
实际选择N=2, R=128。

训练数据构成

N张完整图片以50%概率水平翻转。 
R个候选框的构成方式如下:

类别比例方式前景25%与某个真值重叠在[0.5,1]的候选框背景75%与真值重叠的最大值在[0.1,0.5)的候选框

分类与位置调整

数据结构

第五阶段的特征输入到两个并行的全连层中(称为multi-task)。 
这里写图片描述 
cls_score层用于分类,输出K+1维数组p,表示属于K类和背景的概率。 
bbox_prdict层用于调整候选区域位置,输出4*K维数组t,表示分别属于K类时,应该平移缩放的参数。

代价函数

loss_cls层评估分类代价。由真实分类u对应的概率决定: 

Lcls=logpu

loss_bbox评估检测框定位代价。比较真实分类对应的预测参数tu和真实平移缩放参数为v的差别: 

Lloc=Σ4i=1g(tuivi)

g为Smooth L1误差,对outlier不敏感: 
g(x)={0.5x2|x|0.5|x|<1otherwise

总代价为两者加权和,如果分类为背景则不考虑定位代价: 

L={Lcls+λLlocLclsuu

源码中bbox_loss_weights用于标记每一个bbox是否属于某一个类

全连接层提速

分类和位置调整都是通过全连接层(fc)实现的,设前一级数据为x后一级为y,全连接层参数为W,尺寸u×v。一次前向传播(forward)即为: 

y=Wx

计算复杂度为u×v

W进行SVD分解,并用前t个特征值近似: 

W=UΣVTU(:,1:t)Σ(1:t,1:t)V(:,1:t)T

原来的前向传播分解成两步: 

y=Wx=U(ΣVT)x=Uz

计算复杂度变为u×t+v×t。 
在实现时,相当于把一个全连接层拆分成两个,中间以一个低维数据相连。 
这里写图片描述

在github的源码中,这部分似乎没有实现。

实验与结论

实验过程不再详述,只记录结论 
- 网络末端同步训练的分类和位置调整,提升准确度 
- 使用多尺度的图像金字塔,性能几乎没有提高 
倍增训练数据,能够有2%-3%的准确度提升 
- 网络直接输出各类概率(softmax),比SVM分类器性能略好 
更多候选窗不能提升性能

同年作者团队又推出了Faster RCNN,进一步把检测速度提高到准实时,可以参看这篇博客。 
关于RCNN, Fast RCNN, Faster RCNN这一系列目标检测算法,可以进一步参考作者在15年ICCV上的讲座Training R-CNNs of various velocities。



Ren, Shaoqing, et al. “Faster R-CNN: Towards real-time object detection with region proposal networks.” Advances in Neural Information Processing Systems. 2015.

本文是继RCNN[1],fast RCNN[2]之后,目标检测界的领军人物Ross Girshick团队在2015年的又一力作。简单网络目标检测速度达到17fps,在PASCAL VOC上准确率为59.9%;复杂网络达到5fps,准确率78.8%。

作者在github上给出了基于matlab和python的源码。对Region CNN算法不了解的同学,请先参看这两篇文章:《RCNN算法详解》,《fast RCNN算法详解》。

思想

从RCNN到fast RCNN,再到本文的faster RCNN,目标检测的四个基本步骤(候选区域生成,特征提取,分类,位置精修)终于被统一到一个深度网络框架之内。所有计算没有重复,完全在GPU中完成,大大提高了运行速度。 
这里写图片描述

faster RCNN可以简单地看做“区域生成网络+fast RCNN“的系统,用区域生成网络代替fast RCNN中的Selective Search方法。本篇论文着重解决了这个系统中的三个问题: 
1. 如何设计区域生成网络 
2. 如何训练区域生成网络 
3. 如何让区域生成网络和fast RCNN网络共享特征提取网络

区域生成网络:结构

基本设想是:在提取好的特征图上,对所有可能的候选框进行判别。由于后续还有位置精修步骤,所以候选框实际比较稀疏。 
这里写图片描述

特征提取

原始特征提取(上图灰色方框)包含若干层conv+relu,直接套用ImageNet上常见的分类网络即可。本文试验了两种网络:5层的ZF[3],16层的VGG-16[4],具体结构不再赘述。 
额外添加一个conv+relu层,输出51*39*256维特征(feature)。

候选区域(anchor)

特征可以看做一个尺度51*39的256通道图像,对于该图像的每一个位置,考虑9个可能的候选窗口:三种面积{1282,2562,5122}×三种比例{1:1,1:2,2:1}。这些候选窗口称为anchors。下图示出51*39个anchor中心,以及9种anchor示例。 
这里写图片描述

在整个faster RCNN算法中,有三种尺度。 
原图尺度:原始输入的大小。不受任何限制,不影响性能。 
归一化尺度:输入特征提取网络的大小,在测试时设置,源码中opts.test_scale=600。anchor在这个尺度上设定。这个参数和anchor的相对大小决定了想要检测的目标范围。 
网络输入尺度:输入特征检测网络的大小,在训练时设置,源码中为224*224。

窗口分类和位置精修

分类层(cls_score)输出每一个位置上,9个anchor属于前景和背景的概率;窗口回归层(bbox_pred)输出每一个位置上,9个anchor对应窗口应该平移缩放的参数。 
对于每一个位置来说,分类层从256维特征中输出属于前景和背景的概率;窗口回归层从256维特征中输出4个平移缩放参数。

就局部来说,这两层是全连接网络;就全局来说,由于网络在所有位置(共51*39个)的参数相同,所以实际用尺寸为1×1的卷积网络实现。

需要注意的是:并没有显式地提取任何候选窗口,完全使用网络自身完成判断和修正。

区域生成网络:训练

样本

考察训练集中的每张图像: 
a. 对每个标定的真值候选区域,与其重叠比例最大的anchor记为前景样本 
b. 对a)剩余的anchor,如果其与某个标定重叠比例大于0.7,记为前景样本;如果其与任意一个标定的重叠比例都小于0.3,记为背景样本 
c. 对a),b)剩余的anchor,弃去不用。 
d. 跨越图像边界的anchor弃去不用

代价函数

同时最小化两种代价: 
a. 分类误差 
b. 前景样本的窗口位置偏差 
具体参看fast RCNN中的“分类与位置调整”段落。

超参数

原始特征提取网络使用ImageNet的分类样本初始化,其余新增层随机初始化。 
每个mini-batch包含从一张图像中提取的256个anchor,前景背景样本1:1. 
前60K迭代,学习率0.001,后20K迭代,学习率0.0001。 
momentum设置为0.9,weight decay设置为0.0005。[5]

共享特征

区域生成网络(RPN)和fast RCNN都需要一个原始特征提取网络(下图灰色方框)。这个网络使用ImageNet的分类库得到初始参数W0,但要如何精调参数,使其同时满足两方的需求呢?本文讲解了三种方法。 
这里写图片描述

轮流训练

a. 从W0开始,训练RPN。用RPN提取训练集上的候选区域 
b. 从W0开始,用候选区域训练Fast RCNN,参数记为W1 
c. 从W1开始,训练RPN… 
具体操作时,仅执行两次迭代,并在训练时冻结了部分层。论文中的实验使用此方法。 
如Ross Girshick在ICCV 15年的讲座Training R-CNNs of various velocities中所述,采用此方法没有什么根本原因,主要是因为”实现问题,以及截稿日期“。

近似联合训练

直接在上图结构上训练。在backward计算梯度时,把提取的ROI区域当做固定值看待;在backward更新参数时,来自RPN和来自Fast RCNN的增量合并输入原始特征提取层。 
此方法和前方法效果类似,但能将训练时间减少20%-25%。公布的python代码中包含此方法。

联合训练

直接在上图结构上训练。但在backward计算梯度时,要考虑ROI区域的变化的影响。推导超出本文范畴,请参看15年NIP论文[6]。

实验

除了开篇提到的基本性能外,还有一些值得注意的结论

  • 与Selective Search方法(黑)相比,当每张图生成的候选区域从2000减少到300时,本文RPN方法(红蓝)的召回率下降不大。说明RPN方法的目的性更明确。 
    这里写图片描述

  • 使用更大的Microsoft COCO库[7]训练,直接在PASCAL VOC上测试,准确率提升6%。说明faster RCNN迁移性良好,没有over fitting。 
    这里写图片描述


  1. Girshick, Ross, et al. “Rich feature hierarchies for accurate object detection and semantic segmentation.” Proceedings of the IEEE conference on computer vision and pattern recognition. 2014. ↩
  2. Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE International Conference on Computer Vision. 2015. ↩
  3. M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional neural networks,” in European Conference on Computer Vision (ECCV), 2014. ↩
  4. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in International Conference on Learning Representations (ICLR), 2015. ↩
  5. learning rate-控制增量和梯度之间的关系;momentum-保持前次迭代的增量;weight decay-每次迭代缩小参数,相当于正则化。 ↩
  6. Jaderberg et al. “Spatial Transformer Networks” 
    NIPS 2015 ↩
  7. 30万+图像,80类检测库。参看http://mscoco.org/。 ↩
0 0