Eigen教程1 - 基础

来源:互联网 发布:java attribute用法 编辑:程序博客网 时间:2024/05/01 18:18

固定大小的矩阵和向量

/* * 参考链接:http://eigen.tuxfamily.org/dox-2.0/TutorialCore.html#TutorialCoreGettingStarted*/#include <iostream>#include <Eigen/Core>using namespace Eigen;  using namespace std;  // import most common Eigen typesint main(int, char *[]){    Matrix3f m3; //3x3单精度矩阵    m3 << 1, 2, 3, 4, 5, 6, 7, 8, 9;    Matrix4f m4 = Matrix4f::Identity(); //4x4单位矩阵(单精度)    Vector4i v4(1, 2, 3, 4); // 长度为4的整型向量    // 输出结果    std::cout << "m3\n" << m3 << "\nm4:\n"        << m4 << "\nv4:\n" << v4 << std::endl;}
  • Matrix表示矩阵,Vector表示向量,数字表示维度,最后的f和i分别表示单精度和整型数据类型。
  • 固定大小表示编译时,行数和列数是固定的。这时,Eigen不会分配动态内存。这对于比较小的尺寸比较适合,比如16x16。

动态大小的矩阵和向量

/* * 参考链接:http://eigen.tuxfamily.org/dox-2.0/TutorialCore.html#TutorialCoreGettingStarted*/#include <iostream>#include <Eigen/Core>using namespace Eigen;  using namespace std;  int main(int, char *[]){    // 动态矩阵    for (int size=1; size<=4; ++size)    {        MatrixXi m(size,size+1); // 一个整型的大小为 (size)x(size+1) 的矩阵        for (int j=0; j<m.cols(); ++j) // 遍历列            for (int i=0; i<m.rows(); ++i) // 遍历行                m(i,j) = i+j*m.rows(); // 使用圆括号m(i,j)访问矩阵的元素        std::cout << m << "\n\n"; //打印矩阵    }    // 动态向量    VectorXf v(4); // 定义一个4维单精度向量    // 使用圆括号()或方括号[]访问向量元素    v[0] = 1; v[1] = 2; v(2) = 3; v(3) = 4;    std::cout << "\nv:\n" << v << std::endl;}
  • 小结:X表示动态大小。
  • #include <Eigen/Eigen>将包含所有的Eigen函数。#include <Eigen/Dense>包含所有普通矩阵函数,不包括稀疏矩阵函数。它们会增加编译时间。

矩阵和向量类型

  • Eigen中的所有密集矩阵和向量都是通过Matrix类来表示的。Matrix通过一系列的模板参数来生成具体的类别。
  • Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime>中,Scalar表示数据类型,RowsAtCompileTime和ColsAtCompileTime分别表示编译时的行数和列数。
  • Vector3d 定义为 Matrix<double, 3, 1>
  • 对于动态大小的类型,在编译时不指定行数和列数,使用Eigen::Dynamic。比如,VectorXd定义为Matrix<double, Dynamic, 1>

访问元素

  • Eigen支持以下的读/写元素语法:
matrix(i,j);vector(i)vector[i]vector.x() // first coefficientvector.y() // second coefficientvector.z() // third coefficientvector.w() // fourth coefficient
  • 矩阵只能通过圆括号()访问;
  • 向量可以通过圆括号()和方括号[]访问。
  • 上述的元素访问方法都通过断言检查范围,代价比较大。
    • 通过定义EIGEN_NO_DEBUG 或 NDEBUG,取消断言。
    • 通过使用coeff()coeffRef(),来取消检查。比如,MatrixBase::coeff(int,int) const, MatrixBase::coeffRef(int,int)等。

创建和初始化矩阵和向量

通过预定义矩阵初始化

创建固定大小的矩阵和向量
/* * 参考链接:http://eigen.tuxfamily.org/dox-2.0/TutorialCore.html#TutorialCoreGettingStarted*/#include <iostream>#include <Eigen/Core>using namespace Eigen;  using namespace std;  int main(int, char *[]){    float value = 3.0;    Matrix3f x; // 创建一个3x3的单精度矩阵    x = Matrix3f::Zero(); //全零矩阵    cout << x << endl << endl;    x = Matrix3f::Ones(); //全一矩阵    cout << x << endl << endl;    x = Matrix3f::Constant(value); //全value矩阵    cout << x << endl << endl;    x = Matrix3f::Identity(); //单位矩阵    cout << x << endl << endl;    x = Matrix3f::Random(); // 随机矩阵    cout << x << endl << endl;    x.setZero();    cout << x << endl << endl;    x.setOnes();    cout << x << endl << endl;    x.setIdentity();    cout << x << endl << endl;    x.setConstant(value);    cout << x << endl << endl;    x.setRandom();    cout << x << endl << endl;}
创建动态大小的矩阵
/* * 参考链接:http://eigen.tuxfamily.org/dox-2.0/TutorialCore.html#TutorialCoreGettingStarted*/#include <iostream>#include <Eigen/Core>using namespace Eigen;  using namespace std;  int main(int, char *[]){    float value = 3.0f;    int rows = 3;    int cols = 4;    MatrixXf x;    x = MatrixXf::Zero(rows, cols);    cout << x << endl << endl;    x = MatrixXf::Ones(rows, cols);    cout << x << endl << endl;    x = MatrixXf::Constant(rows, cols, value);    cout << x << endl << endl;    x = MatrixXf::Identity(rows, cols);    cout << x << endl << endl;    x = MatrixXf::Random(rows, cols);    cout << x << endl << endl;    x.setZero(rows, cols);    cout << x << endl << endl;    x.setOnes(rows, cols);    cout << x << endl << endl;    x.setConstant(rows, cols, value);    cout << x << endl << endl;    x.setIdentity(rows, cols);    cout << x << endl << endl;    x.setRandom(rows, cols);    cout << x << endl << endl;    return 0;}
创建动态大小的向量
/* * 参考链接:http://eigen.tuxfamily.org/dox-2.0/TutorialCore.html#TutorialCoreGettingStarted*/#include <iostream>#include <Eigen/Core>using namespace Eigen;  using namespace std;  int main(int, char *[]){    int size = 3;    float value = 3.0f;    VectorXf x; // 定义动态向量    x = VectorXf::Zero(size); //全0向量    cout << x << endl << endl;    x = VectorXf::Ones(size); //全1向量    cout << x << endl << endl;    x = VectorXf::Constant(size, value);//全value向量    cout << x << endl << endl;    //x = VectorXf::Identity(size);//报错    x = VectorXf::Random(size);    cout << x << endl << endl;    x.setZero(size);    cout << x << endl << endl;    x.setOnes(size);    cout << x << endl << endl;    x.setConstant(size, value);    cout << x << endl << endl;    //x.setIdentity(size);    x.setRandom(size);    cout << x << endl << endl;    return 0;}
创建固定大小的基向量
/* * 参考链接:http://eigen.tuxfamily.org/dox-2.0/TutorialCore.html#TutorialCoreGettingStarted*/#include <iostream>#include <Eigen/Core>using namespace Eigen;  using namespace std;  int main(int, char *[]){    Vector3f x;    x = Vector3f::UnitX(); // 1 0 0    cout << x << endl << endl;    x = Vector3f::UnitY(); // 0 1 0    cout << x << endl << endl;    x = Vector3f::UnitZ(); // 0 0 1    cout << x << endl << endl;    return 0;}
创建动态大小的基向量
/* * 参考链接:http://eigen.tuxfamily.org/dox-2.0/TutorialCore.html#TutorialCoreGettingStarted*/#include <iostream>#include <Eigen/Core>using namespace Eigen;  using namespace std;  int main(int, char *[]){    VectorXf x;    x = VectorXf::Unit(4,1);    cout << x << endl << endl;    x = Vector4f(0,1,0,0);    cout << x << endl << endl;    x = Vector4f::UnitY();    cout << x << endl << endl;    return 0;}
例子
/* * 参考链接:http://eigen.tuxfamily.org/dox-2.0/TutorialCore.html#TutorialCoreGettingStarted*/#include <iostream>#include <Eigen/Core>using namespace Eigen;  using namespace std;  int main(int, char *[]){    cout << MatrixXf::Constant(2, 3, sqrt(2)) << endl; // 2x3的单精度矩阵    RowVector3i v; //3维行向量    v.setConstant(6);    cout << "v = " << v << endl;    return 0;}

通过Cast的方式初始化

相同尺寸的矩阵兼容
  • 元素类型通过MatrixBase::cast()自动转换。
/* * 参考链接:http://eigen.tuxfamily.org/dox-2.0/TutorialCore.html#TutorialCoreGettingStarted*/#include <iostream>#include <Eigen/Core>#include <Eigen/Eigen>using namespace Eigen;  using namespace std;  int main(int, char *[]){    Vector3d md(1,2,3);    Vector3f mf = md.cast<float>();    cout << "md = " << md << endl;    cout << "mf = " << mf << endl;    return 0;}
相同类型的矩阵兼容
/* * 参考链接:http://eigen.tuxfamily.org/dox-2.0/TutorialCore.html#TutorialCoreGettingStarted*/#include <iostream>#include <Eigen/Core>using namespace Eigen;  using namespace std;  int main(int, char *[]){    MatrixXf res(10,10);    Matrix3f a, b;    a = Matrix3f::Identity();    b = Matrix3f::Constant(3);    res = a+b; // OK: res is resized to size 3x3    cout << a << endl << endl;    cout << b << endl << endl;    cout << res << endl << endl;    return 0;}

通过Map方式初始化

/* * 参考链接:http://eigen.tuxfamily.org/dox-2.0/TutorialCore.html#TutorialCoreGettingStarted*/#include <iostream>#include <vector>#include <Eigen/Core>using namespace Eigen;  using namespace std;  int main(int, char *[]){    std::vector<float> stlarray(10);    VectorXf::Map(&stlarray[0], stlarray.size()).squaredNorm();    return 0;}
  • 下面的代码没有完全调通
/* * 参考链接:http://eigen.tuxfamily.org/dox-2.0/TutorialCore.html#TutorialCoreGettingStarted*/#include <iostream>#include <vector>#include <Eigen/Core>using namespace Eigen;  using namespace std;  int main(int, char *[]){    const int rows = 3;    const int cols = 4;    float array[rows*cols];    Map<MatrixXf> m(array,rows,cols);    Matrix3f othermatrix1 = Matrix3f::Identity();//单位矩阵    MatrixXf othermatrix2(3,4);    othermatrix2 = MatrixXf::Constant(3,4,5);//3x4的常量矩阵,值都为5    m = othermatrix1 * othermatrix2;    //m.eigenvalues();    std::vector<float> stlarray(10);    VectorXf::Map(&stlarray[0], stlarray.size()).squaredNorm();    cout << m << endl;    return 0;}

通过逗号初始化

/* * 参考链接:http://eigen.tuxfamily.org/dox-2.0/TutorialCore.html#TutorialCoreGettingStarted*/#include <iostream>#include <vector>#include <Eigen/Core>using namespace Eigen;  using namespace std;  int main(int, char *[]){    Matrix3f m;    m << 1, 2, 3,        4, 5, 6,        7, 8, 9;    cout << m << endl;    return 0;}
  • 使用逗号和子矩阵,初始化矩阵。
/* * 参考链接:http://eigen.tuxfamily.org/dox-2.0/TutorialCore.html#TutorialCoreGettingStarted*/#include <iostream>#include <vector>#include <Eigen/Core>using namespace Eigen;  using namespace std;  int main(int, char *[]){    int rows=5, cols=5;    MatrixXf m(rows,cols);    m << (Matrix3f() << 1, 2, 3, 4, 5, 6, 7, 8, 9).finished(),//左上角3x3        MatrixXf::Zero(3,cols-3), //右上角3x2        MatrixXf::Zero(rows-3,3), //左下角2x3        MatrixXf::Identity(rows-3,cols-3); //右下角2x2    cout << m << endl;    return 0;}
  • .finished()用于当临时矩阵初始化完成时,获取实际的矩阵对象。尽管看起来很复杂,但实际上编译时已经优化。

算术操作

传统的数学运算

  • 矩阵/向量乘法:
col2 = mat1 * col1; //矩阵x列向量row2 = row1 * mat1;  // 行向量x矩阵row1 *= mat1;mat3 = mat1 * mat2; mat3 *= mat1;
  • 矩阵/向量加法/减法:
mat3 = mat1 + mat2; mat3 += mat1;mat3 = mat1 - mat2; mat3 -= mat1;
  • 标量加法/减法:
mat3 = mat1 * s1; mat3 = s1 * mat1; mat3 *= s1;mat3 = mat1 / s1; mat3 /= s1;

逐元素的操作

  • 逐元素的操作,请查阅.cwise()

  • 逐元素乘法

mat3 = mat1.cwise() * mat2;
  • 加/减标量
//需要Array模块 #include <Eigen/Array>mat3 = mat1.cwise() + scalar;mat3.cwise() += scalar;mat3.cwise() -= scalar;
  • 逐元素除法
//需要Array模块 #include <Eigen/Array>mat3 = mat1.cwise() / mat2;
  • 逐元素取倒数
//需要Array模块 #include <Eigen/Array>mat3 = mat1.cwise().inverse();
  • 逐元素比较运算
//需要Array模块 #include <Eigen/Array>mat3 = mat1.cwise() < mat2;mat3 = mat1.cwise() <= mat2;mat3 = mat1.cwise() > mat2;//等
  • 三角余弦
    • sin(), cos()等。
//需要Array模块 #include <Eigen/Array>mat3 = mat1.cwise().sin();// 等
  • 指数
    • pow(), square(), cube(), sqrt(), exp(), log()等。
//需要Array模块 #include <Eigen/Array>mat3 = mat1.cwise().square();mat3 = mat1.cwise().pow(5);mat3 = mat1.cwise().log();//等
  • 最小值,最大值,绝对值
mat3 = mat1.cwise().min(mat2);mat3 = mat1.cwise().max(mat2);mat3 = mat1.cwise().abs();mat3 = mat1.cwise().abs2();
  • 各种乘法运算

    • 矩阵乘法:m1*m2
    • 逐元素乘法:mat1.cwise()*mat2
    • 点积:scalar = vec1.dot(vec2);
    • 外积:mat = vec1 * vec2.transpose();
    • 交叉积:#include <Eigen/Geometry> vec3 = vec1.cross(vec2);
  • 逐元素操作示例:

/* * 参考链接:http://eigen.tuxfamily.org/dox-2.0/TutorialCore.html#TutorialCoreGettingStarted*/#include <iostream>#include <vector>#include <Eigen/Eigen>using namespace Eigen;  using namespace std;  int main(int, char *[]){    Matrix3f x, y;    x << 5,3,1,2,-7,8,9,-4,6;    y << 5,3,1,2,-7,8,9,4,7;    cout << x << endl << endl;    cout << x.cwiseAbs() << endl << endl;//绝对值    cout << x.cwiseAbs2() << endl << endl; //平方    cout << x.cwiseEqual(y) << endl << endl; //是否相等    cout << x.cwiseMax(y) << endl << endl; //逐元素最大值    cout << x.cwiseMin(y) << endl << endl;    cout << x.cwiseInverse() << endl << endl; //倒数    cout << x.cwiseNotEqual(y) << endl << endl; //不相等    cout << x.cwiseProduct(y) << endl << endl; //逐元素乘法    cout << x.cwiseQuotient(y) << endl << endl; //除法    cout << x.cwiseSqrt() << endl << endl; //    return 0;}

Reductions

  • Eigen提供了一些reduction方法: minCoeff() , maxCoeff() , sum() , trace() , norm() , squaredNorm() , all() , 和 any()。
  • 上述这些方法都可以逐列或逐行的执行。如下所示:
/* * 参考链接:http://eigen.tuxfamily.org/dox-2.0/TutorialCore.html#TutorialCoreGettingStarted*/#include <iostream>#include <vector>#include <Eigen/Core>using namespace Eigen;  using namespace std;  int main(int, char *[]){    Matrix3f x;    x << 5,3,1,2,7,8,9,4,6;    cout << x.minCoeff() << endl;    cout << x.colwise().minCoeff() << endl;    cout << x.rowwise().minCoeff() << endl;    return 0;}
  • maxCoeff()和minCoeff()函数可以通过设置可选参数,返回最大/小值的位置:maxCoeff(int* i, int* j) , minCoeff(int* i, int* j) 。
  • all() 和 any()在使用逐元素操作时,非常有用。

参考

  • http://eigen.tuxfamily.org/dox-2.0/TutorialCore.html#TutorialCoreGettingStarted
  • 备注:该链接的内容过时了。。。
1 0
原创粉丝点击