Linux内核中的PCB里面task_struct结构体中的具体信息

来源:互联网 发布:mac切换输入法 编辑:程序博客网 时间:2024/05/22 04:58

1、PCB进程控制块--->task_struct

广义上,所有的进程信息被放在一个叫做进程控制块的数据结构中,可以理解为进程属性的集合。

每个进程在内核中都有一个进程控制块来维护进程的相关信息,Linux内核的进程控制块是task_struct结构体,task_struct主要包含了以下内容:

1.调度数据成员

① volatile long state ;

表示进程的当前状态:

? TASK_RUNNING:正在运行或在就绪队列run-queue中准备运行的进程,实际参与进程调度。

? TASK_INTERRUPTIBLE:处于等待队列中的进程,待资源有效时唤醒,也可由其它进程通过信号(signal)或定时中断唤醒后进入就绪队列run-queue。

? TASK_UNINTERRUPTIBLE:处于等待队列中的进程,待资源有效时唤醒,不可由其它进程通过信号(signal)或定时中断唤醒。

? TASK_ZOMBIE:表示进程结束但尚未消亡的一种状态(僵死状态)。此时,进程已经结束运行且释放大部分资源,但尚未释放进程控制块。

?TASK_STOPPED:进程被暂停,通过其它进程的信号才能唤醒。导致这种状态的原因有二,或者是对收到SIGSTOP、SIGSTP、SIGTTIN或SIGTTOU信号的反应,或者是受其它进程的ptrace系统调用的控制而暂时将CPU交给控制进程。

? TASK_SWAPPING: 进程页面被交换出内存的进程。

②unsigned long flags;

 Flage 是进程号,在调用fork()时给出,表示进程标志:

?PF_ALIGNWARN        打印“对齐”警告信息。

?PF_PTRACED           被ptrace系统调用监控。

?PF_TRACESYS          正在跟踪。

?PF_FORKNOEXEC       进程刚创建,但还没执行。

?PF_SUPERPRIV         超级用户特权。

?PF_DUMPCORE         dumped core。

?PF_SIGNALED          进程被信号(signal)杀出。

?PF_STARTING          进程正被创建。

?PF_EXITING            进程开始关闭。

?PF_USEDFPU           该进程使用FPU(SMP only)。

?PF_DTRACE            delayed trace (used on m68k)。

③long priority;

表示进程优先级 

Priority的值给出进程每次获取CPU后可使用的时间(按jiffies计)。优先级可通过系统调用sys_setpriorty改变(在kernel/sys.c中)。

④unsigned long rt_priority;

 给出实时进程的优先级

rt_priority+1000给出进程每次获取CPU后可使用的时间(同样按jiffies计)。实时进程的优先级可通过系统 调用sys_sched_setscheduler()改变(

见kernel/sched.c)。

 long counter;

轮转法调度时表示进程当前还可运行多久

在进程开始运行是被赋为priority的值,以后每隔一个tick(时钟中断)递减1,减到0时引起新一轮调 度。重新调度将从run_queue队列选出counter值最

大的就绪进程并给予CPU使用权,因此counter起到了进程的动态优先级的作用 (priority则是静态优先级)。

unsigned long policy;

该进程的进程调度策略

可以通过系统调用sys_sched_setscheduler()更改(见kernel/sched.c)。调度策略有:

?SCHED_OTHER   0   非实时进程,基于优先权的轮转法(round robin)。

?SCHED_FIFO     1   实时进程,用先进先出算法

?SCHED_RR       2   实时进程,用基于优先权的轮转法。

2.信号处理

 unsigned long signal;

进程接收到的信号。每位表示一种信号,共32种。置位有效。

unsigned long blocked;

进程所能接受信号的位掩码。置位表示屏蔽,复位表示不屏蔽。

struct signal_struct *sig;

因为signal和blocked都是32位的变量,Linux最多只能接受32种信号。对每种信号,各进程可以由PCB的sig属性选择使用自定义的处理函数,或是系统的缺省处理函数。指派各种信息处理函数的结构定义在include/linux/sched.h中。对信号的检查安排在系统调用结束后,以及“慢速型”中断服务程序结束后。

3.进程队列指针

struct task_struct *next_task,*prev_task;

所有进程(以PCB的形式)组成一个双向链表。next_task和就是链表的前后指针。链表的头和尾都是init_task(即0号进程)。

struct task_struct *next_run,*prev_run;

由正在运行或是可以运行的,其进程状态均为TASK_RUNNING的进程所组成的一个双向循环链表,即run_queue就绪队列。该链表的前后向指针用next_run和prev_run,链表的头和尾都是init_task(即0号进程)。

 struct task_struct *p_opptr,*p_pptr;和struct task_struct *p_cptr,*p_ysptr,*p_osptr;

 以上分别是指向原始父进程(original parent)、父进程(parent)、子进程(youngest child)及新老兄弟进程(younger sibling,older sibling)的指针。

4.进程标识

unsigned short uid,gid;

uid和gid是运行进程的用户标识和用户组标识。

 int groups[NGROUPS];

与多数现代UNIX操作系统一样,Linux允许进程同时拥有一组用户组号。在进程访问文件时,这些组号可用于合法性检查。

unsigned short euid,egid;

euid 和egid又称为有效的uid和gid。出于系统安全的权限的考虑,运行程序时要检查euid和egid的合法性。通常,uid等于euid,gid等于 egid。有时候,系统会赋予一般用户暂时拥有root的uid和gid(作为用户进程的euid和egid),以便于进行运作。

 unsigned short fsuid,fsgid;

fsuid 和fsgid称为文件系统的uid和gid,用于文件系统操作时的合法性检查,是Linux独特的标识类型。它们一般分别和euid和egid一致,但在 NFS文件系统中NFS服务器需要作为一个特殊的进程访问文件,这时只修改客户进程的fsuid和fsgid。

⑤unsigned short suid,sgid;

suid和sgid是根据POSIX标准引入的,在系统调用改变uid和gid时,用于保留真正的uid和gid。

⑥ int pid,pgrp,session;

进程标识号、进程的组织号及session标识号,相关系统调用(见程序kernel/sys.c)有sys_setpgid、sys_getpgid、sys_setpgrp、sys_getpgrp、sys_getsid及sys_setsid几种。

⑦ int leader;

是否是session的主管,布尔量。

5.时间数据成员

①unsigned long timeout;

用于软件定时,指出进程间隔多久被重新唤醒。采用tick为单位。

②unsigned long it_real_value,it_real_iner;

用 于itimer(interval timer)软件定时。采用jiffies为单位,每个tick使it_real_value减到0时向进程发信号SIGALRM,并重新置初值。初值由 it_real_incr保存。具体代码见kernel/itimer.c中的函数it_real_fn()。

③ struct timer_list real_timer;

一种定时器结构(Linux共有两种定时器结构,另一种称作old_timer)。数据结构的定义在include/linux/timer.h中,相关操作函数见kernel/sched.c中add_timer()和del_timer()等。

④ unsigned long it_virt_value,it_virt_incr;

关 于进程用户态执行时间的itimer软件定时。采用jiffies为单位。进程在用户态运行时,每个tick使it_virt_value减1,减到0时 向进程发信号SIGVTALRM,并重新置初值。初值由it_virt_incr保存。具体代码见kernel/sched.c中的函数 do_it_virt()。

⑤ unsigned long it_prof_value,it_prof_incr;

同样是 itimer软件定时。采用jiffies为单位。不管进程在用户态或内核态运行,每个tick使it_prof_value减1,减到0时向进程发信号 SIGPROF,并重新置初值。初值由it_prof_incr保存。 具体代码见kernel/sched.c中的函数do_it_prof。

⑥ long utime,stime,cutime,cstime,start_time;

以上分别为进程在用户态的运行时间、进程在内核态的运行时间、所有层次子进程在用户态的运行时间总和、所有层次子进程在核心态的运行时间总和,以及创建该进程的时间。

6.信号量数据成员

① struct sem_undo *semundo;

进程每操作一次信号量,都生成一个对此次操作的undo操作,它由sem_undo结构描述。这些属于同一进程的undo操作组成的链表就由semundo 属性指示。当进程异常终止时,系统会调用undo操作。sem_undo的成员semadj指向一个数据数组,表示各次undo的量。结构定义在 include/linux/sem.h。

② struct sem_queue *semsleeping;

每一信号量集合对应一 个sem_queue等待队列(见include/linux/sem.h)。进程因操作该信号量集合而阻塞时,它被挂到semsleeping指示的关于该信号量集合的sem_queue队列。反过来,semsleeping。sleeper指向该进程的PCB。

7. 进程上下文环境 

① struct desc_struct *ldt;

进程关于CPU段式存储管理的局部描述符表的指针,用于仿真WINE Windows的程序。其他情况下取值NULL,进程的ldt就是arch/i386/traps.c定义的default_ldt。

② struct thread_struct tss;

任务状态段,其内容与INTEL CPU的TSS对应,如各种通用寄存器.CPU调度时,当前运行进程的TSS保存到PCB的tss,新选中进程的tss内容复制到CPU的TSS。结构定义在include/linux/tasks.h中。

③ unsigned long saved_kernel_stack;

为MS-DOS的仿真程序(或叫系统调用vm86)保存的堆栈指针。

④ unsigned long kernel_stack_page;

在内核态运行时,每个进程都有一个内核堆栈,其基地址就保存在kernel_stack_page中。

8. 文件系统数据成员 

① struct fs_struct *fs;

fs 保存了进程本身与VFS的关系消息,其中root指向根目录结点,pwd指向当前目录结点,umask给出新建文件的访问模式(可由系统调用umask更 改),count是Linux保留的属性,如下页图所示。结构定义在include/linux/sched.h中。

② struct files_struct *files;

files包含了进程当前所打开的文件(struct file *fd[NR_OPEN])。在Linux中,一个进程最多只能同时打开NR_OPEN个文件。而且,前三项分别预先设置为标准输入、标准输出和出错消息输出文件。 

③ int link_count;

文件链(link)的数目。

9. 内存数据成员 

① struct mm_struct *mm;

在 linux中,采用按需分页的策略解决进程的内存需求。task_struct的数据成员mm指向关于存储管理的mm_struct结构。其中包含了一个 虚存队列mmap,指向由若干vm_area_struct描述的虚存块。同时,为了加快访问速度,mm中的mmap_avl维护了一个AVL树。在树中,所有vm_area_struct虚存块均由左指针指向相邻的低虚存块,右指针指向相邻的高虚存块。 结构定义在include/linux/sched.h中。

10. 页面管理 

① int swappable:1;

进程占用的内存页面是否可换出。swappable为1表示可换出。对该标志的复位和置位均在do_fork()函数中执行(见kerenl/fork.c)。

② unsigned long swap_address;

虚存地址比swap_address低的进程页面,以前已经换出或已换出过,进程下一次可换出的页面自swap_address开始。参见swap_out_process()和swap_out_pmd()(见mm/vmscan.c)。

③ unsigned long min_flt,maj_flt;

该 进程累计的minor缺页次数和major缺页次数。maj_flt基本与min_flt相同,但计数的范围比后者广(参见fs/buffer.c和mm /page_alloc.c)。min_flt只在do_no_page()、do_wp_page()里(见mm/memory.c)计数新增的可以写 操作的页面。

④ unsigned long nswap;

该进程累计换出的页面数。

⑤ unsigned long cmin_flt,cmaj_flt,cnswap;

以本进程作为祖先的所有层次子进程的累计换入页面、换出页面计数。

⑥ unsigned long old_maj_flt,dec_flt;

⑦ unsigned long swap_cnt;

下一次信号最多可换出的页数。

11. 支持对称多处理器方式(SMP)时的数据成员 

① int processor;

进程正在使用的CPU。

② int last_processor;

进程最后一次使用的CPU。

③ int lock_depth;

上下文切换时系统内核锁的深度。

12. 其它数据成员 

① unsigned short used_math;

是否使用FPU。

② char comm[16];

进程正在运行的可执行文件的文件名。

③ struct rlimit rlim[RLIM_NLIMITS];

结 构rlimit用于资源管理,定义在linux/include/linux/resource.h中,成员共有两项:rlim_cur是资源的当前最大 数目;rlim_max是资源可有的最大数目。在i386环境中,受控资源共有RLIM_NLIMITS项,即10项,定义在linux/include /asm/resource.h中,见下表:

④ int errno;

最后一次出错的系统调用的错误号,0表示无错误。系统调用返回时,全程量也拥有该错误号。

⑤ long debugreg[8];

保存INTEL CPU调试寄存器的值,在ptrace系统调用中使用。

⑥ struct exec_domain *exec_domain;

Linux可以运行由80386平台其它UNIX操作系统生成的符合iBCS2标准的程序。关于此类程序与Linux程序差异的消息就由exec_domain结构保存。

⑦ unsigned long personality;

Linux 可以运行由80386平台其它UNIX操作系统生成的符合iBCS2标准的程序。 Personality进一步描述进程执行的程序属于何种UNIX平台的“个性”信息。通常有PER_Linux、PER_Linux_32BIT、 PER_Linux_EM86、PER_SVR3、PER_SCOSVR3、PER_WYSEV386、PER_ISCR4、PER_BSD、 PER_XENIX和PER_MASK等,参见include/linux/personality.h。

⑧ struct linux_binfmt *binfmt;

指向进程所属的全局执行文件格式结构,共有a。out、script、elf和Java等四种。结构定义在include/linux/binfmts.h中(core_dump、load_shlib(fd)、load_binary、use_count)。

⑨ int exit_code,exit_signal;

引起进程退出的返回代码exit_code,引起错误的信号名exit_signal。

⑩ int dumpable:1;

布尔量,表示出错时是否可以进行memory dump。

int did_exec:1;
按POSIX要求设计的布尔量,区分进程是正在执行老程序代码,还是在执行execve装入的新代码。
int tty_old_pgrp;
进程显示终端所在的组标识。
struct tty_struct *tty;
指向进程所在的显示终端的信息。如果进程不需要显示终端,如0号进程,则该指针为空。结构定义在include/linux/tty.h中。

struct wait_queue *wait_chldexit;

在进程结束时,或发出系统调用wait4后,为了等待子进程的结束,而将自己(父进程)睡眠在该队列上。结构定义在include/linux/wait.h中。

13. 进程队列的全局变量 

① current;

当前正在运行的进程的指针,在SMP中则指向CPU组中正被调度的CPU的当前进程:

           #define current(0+current_set[smp_processor_id()])/*sched.h*/

           struct task_struct *current_set[NR_CPUS];

② struct task_struct init_task;

即0号进程的PCB,是进程的“根”,始终保持初值INIT_TASK。

③ struct task_struct *task[NR_TASKS];

进 程队列数组,规定系统可同时运行的最大进程数(见kernel/sched.c)。NR_TASKS定义在include/linux/tasks.h 中,值为512。每个进程占一个数组元素(元素的下标不一定就是进程的pid),task[0]必须指向init_task(0号进程)。可以通过 task[]数组遍历所有进程的PCB。但Linux也提供一个宏定义for_each_task()(见include/linux /sched.h),它通过next_task遍历所有进程的PCB:

         #define for_each_task(p) /

              for(p=&init_task;(p=p->next_task)!=&init_task;)

④ unsigned long volatile jiffies;

Linux的基准时间(见kernal/sched.c)。系统初始化时清0,以后每隔10ms由时钟中断服务程序do_timer()增1。

⑤int need_resched;

重新调度标志位(见kernal/sched.c)。当需要Linux调度时置位。在系统调用返回前(或者其它情形下),判断该标志是否置位。置位的话,马上调用schedule进行CPU调度。

⑥ unsigned long intr_count;

记录中断服务程序的嵌套层数(见kernal/softirq.c)。正常运行时,intr_count为0。当处理硬件中断、执行任务队列中的任务或者执行bottom half队列中的任务时,intr_count非0。这时,内核禁止某些操作,例如不允许重新调度。


2、具体的task_struct结构体内部

struct task_struct 
{
 //说明了该进程是否可以执行,还是可中断等信息
    volatile long state;  

 //Flage 是进程号,在调用fork()时给出
 unsigned long flags;  

 //进程上是否有待处理的信号
 int sigpending;   

 //进程地址空间,区分内核进程与普通进程在内存存放的位置不同
 mm_segment_t addr_limit;

      //0-0xBFFFFFFF for user-thead  
      //0-0xFFFFFFFF for kernel-thread
                        
 //调度标志,表示该进程是否需要重新调度,若非0,则当从内核态返回到用户态,会发生调度
 volatile long need_resched;

 //锁深度
 int lock_depth;  

 //进程的基本时间片
 long nice;      

 //进程的调度策略,有三种,实时进程:SCHED_FIFO,SCHED_RR, 分时进程:SCHED_OTHER
 unsigned long policy;

 //进程内存管理信息
 struct mm_struct *mm; 
 
 int processor;

 //若进程不在任何CPU上运行, cpus_runnable 的值是0,否则是1 这个值在运行队列被锁时更新
 unsigned long cpus_runnable, cpus_allowed;

 //指向运行队列的指针
 struct list_head run_list; 

 //进程的睡眠时间
 unsigned long sleep_time; 

 //用于将系统中所有的进程连成一个双向循环链表, 其根是init_task
 struct task_struct *next_task, *prev_task;
 struct mm_struct *active_mm;
 struct list_head local_pages;       //指向本地页面      
 unsigned int allocation_order, nr_local_pages;
 struct linux_binfmt *binfmt;  //进程所运行的可执行文件的格式
 int exit_code, exit_signal;
 int pdeath_signal;     //父进程终止是向子进程发送的信号
 unsigned long personality;
 //Linux可以运行由其他UNIX操作系统生成的符合iBCS2标准的程序
 int did_exec:1; 
 pid_t pid;    //进程标识符,用来代表一个进程
 pid_t pgrp;   //进程组标识,表示进程所属的进程组
 pid_t tty_old_pgrp;  //进程控制终端所在的组标识
 pid_t session;  //进程的会话标识
 pid_t tgid;
 int leader;     //表示进程是否为会话主管
 struct task_struct *p_opptr,*p_pptr,*p_cptr,*p_ysptr,*p_osptr;
 struct list_head thread_group;   //线程链表
 struct task_struct *pidhash_next; //用于将进程链入HASH表
 struct task_struct **pidhash_pprev;
 wait_queue_head_t wait_chldexit;  //供wait4()使用
 struct completion *vfork_done;  //供vfork() 使用
 unsigned long rt_priority; //实时优先级,用它计算实时进程调度时的weight值
 //it_real_value,it_real_incr用于REAL定时器,单位为jiffies, 系统根据it_real_value

 //设置定时器的第一个终止时间. 在定时器到期时,向进程发送SIGALRM信号,同时根据

 //it_real_incr重置终止时间,it_prof_value,it_prof_incr用于Profile定时器,单位为jiffies。

 //当进程运行时,不管在何种状态下,每个tick都使it_prof_value值减一,当减到0时,向进程发送

 //信号SIGPROF,并根据it_prof_incr重置时间.
 //it_virt_value,it_virt_value用于Virtual定时器,单位为jiffies。当进程运行时,不管在何种

 //状态下,每个tick都使it_virt_value值减一当减到0时,向进程发送信号SIGVTALRM,根据

 //it_virt_incr重置初值。

 unsigned long it_real_value, it_prof_value, it_virt_value;
 unsigned long it_real_incr, it_prof_incr, it_virt_value;
 struct timer_list real_timer;   //指向实时定时器的指针
 struct tms times;      //记录进程消耗的时间
 unsigned long start_time;  //进程创建的时间

 //记录进程在每个CPU上所消耗的用户态时间和核心态时间
 long per_cpu_utime[NR_CPUS], per_cpu_stime[NR_CPUS]; 
 //内存缺页和交换信息:

 //min_flt, maj_flt累计进程的次缺页数(Copy on Write页和匿名页)和主缺页数(从映射文件或交换

 //设备读入的页面数); nswap记录进程累计换出的页面数,即写到交换设备上的页面数。
 //cmin_flt, cmaj_flt, cnswap记录本进程为祖先的所有子孙进程的累计次缺页数,主缺页数和换出页面数。

 //在父进程回收终止的子进程时,父进程会将子进程的这些信息累计到自己结构的这些域中
 unsigned long min_flt, maj_flt, nswap, cmin_flt, cmaj_flt, cnswap;
 int swappable:1; //表示进程的虚拟地址空间是否允许换出
 //进程认证信息
 //uid,gid为运行该进程的用户的用户标识符和组标识符,通常是进程创建者的uid,gid

 //euid,egid为有效uid,gid
 //fsuid,fsgid为文件系统uid,gid,这两个ID号通常与有效uid,gid相等,在检查对于文件

 //系统的访问权限时使用他们。
 //suid,sgid为备份uid,gid
 uid_t uid,euid,suid,fsuid;
 gid_t gid,egid,sgid,fsgid;
 int ngroups; //记录进程在多少个用户组中
 gid_t groups[NGROUPS]; //记录进程所在的组

 //进程的权能,分别是有效位集合,继承位集合,允许位集合
 kernel_cap_t cap_effective, cap_inheritable, cap_permitted;

 int keep_capabilities:1;
 struct user_struct *user;
 struct rlimit rlim[RLIM_NLIMITS];  //与进程相关的资源限制信息
 unsigned short used_math;   //是否使用FPU
 char comm[16];   //进程正在运行的可执行文件名
 //文件系统信息
 int link_count, total_link_count;

 //NULL if no tty 进程所在的控制终端,如果不需要控制终端,则该指针为空
 struct tty_struct *tty;
 unsigned int locks;
 //进程间通信信息
 struct sem_undo *semundo;  //进程在信号灯上的所有undo操作
 struct sem_queue *semsleeping; //当进程因为信号灯操作而挂起时,他在该队列中记录等待的操作
 //进程的CPU状态,切换时,要保存到停止进程的task_struct中
 struct thread_struct thread;
   //文件系统信息
 struct fs_struct *fs;
   //打开文件信息
 struct files_struct *files;
   //信号处理函数
 spinlock_t sigmask_lock;
 struct signal_struct *sig; //信号处理函数
 sigset_t blocked;  //进程当前要阻塞的信号,每个信号对应一位
 struct sigpending pending;  //进程上是否有待处理的信号
 unsigned long sas_ss_sp;
 size_t sas_ss_size;
 int (*notifier)(void *priv);
 void *notifier_data;
 sigset_t *notifier_mask;
 u32 parent_exec_id;
 u32 self_exec_id;

 spinlock_t alloc_lock;
 void *journal_info;
 };





0 0