【Java并发】详解 AbstractQueuedSynchronizer

来源:互联网 发布:java爬虫爬取今日头条 编辑:程序博客网 时间:2024/05/17 08:24

http://www.cnblogs.com/zhangjk1993/p/6715653.html

 

前言

队列同步器 AbstractQueuedSynchronizer(以下简称 AQS),是用来构建锁或者其他同步组件的基础框架。它使用一个 int 成员变量来表示同步状态,通过 CAS 操作对同步状态进行修改,确保状态的改变是安全的。通过内置的 FIFO (First In First Out)队列来完成资源获取线程的排队工作。更多关于 Java 多线程的文章可以转到 这里

AQS 和 synchronized

在介绍 AQS 的使用之前,需要首先说明一点,AQS 同步和 synchronized 关键字同步(以下简称 synchronized 同步)是采用的两种不同的机制。首先看下 synchronized 同步,synchronized 关键字经过编译之后,会在同步块的前后分别形成 monitorenter 和 monitorexit 这两个字节码指令,这两个字节码需要关联到一个监视对象,当线程执行 monitorenter 指令时,需要首先获得获得监视对象的锁,这里监视对象锁就是进入同步块的凭证,只有获得了凭证才可以进入同步块,当线程离开同步块时,会执行 monitorexit 指令,释放对象锁。

在 AQS 同步中,使用一个 int 类型的变量 state 来表示当前同步块的状态。以独占式同步(一次只能有一个线程进入同步块)为例,state 的有效值有两个 0 和 1,其中 0 表示当前同步块中没有线程,1 表示同步块中已经有线程在执行。当线程要进入同步块时,需要首先判断 state 的值是否为 0,假设为 0,会尝试将 state 修改为 1,只有修改成功了之后,线程才可以进入同步块。注意上面提到的两个条件:

  • state 为 0,证明当前同步块中没有线程在执行,所以当前线程可以尝试获得进入同步块的凭证,而这里的凭证就是是否成功将 state 修改为 1(在 synchronized 同步中,我们说的凭证是对象锁,但是对象锁的最终实现是否和这种方式类似,没有找到相关的资料)
  • 成功将 state 修改为 1,通过使用 CAS 操作,我们可以确保即便有多个线程同时修改 state,也只有一个线程会修改成功。关于 CAS 的具体解释会在后面提到。

当线程离开同步块时,会修改 state 的值,将其设为 0,并唤醒等待的线程。所以在 AQS 同步中,我们说线程获得了锁,实际上是指线程成功修改了状态变量 state,而线程释放了锁,是指线程将状态变量置为了可修改的状态(在独占式同步中就是置为了 0),让其他线程可以再次尝试修改状态变量。在下面的表述中,我们说线程获得和释放了锁,就是上述含义, 这与 synchronized 同步中说的获得和释放锁的含义不同,需要区别理解。

基本使用

本节摘自 Java 并发编程的艺术

AQS 的设计是基于模板方法的,使用者需要继承 AQS 并重写指定的方法。在后续的流程中,AQS 提供的模板方法会调用重写的方法。一般来说,我们需要重写的方法主要有下面 5 个:

方法名称描述protected boolean tryAcquire(int)独占式获取锁,实现该方法需要查询当前状态并判断同步状态是否和预期值相同,然后使用 CAS 操作设置同步状态protected boolean tryRelease(int)独占式释放锁,实际也是修改同步变量protected int tryAcquireShared(int)共享式获取锁,返回大于等于 0 的值,表示获取锁成功,反之获取失败protected boolean tryReleaseShared(int)共享式释放锁protected boolean isHeldExclusively()判断调用该方法的线程是否持有互斥锁

在自定义的同步组件中,我们一般会调用 AQS 提供的模板方法。AQS 提供的模板方法基本上分为 3 类: 独占式获取与释放锁、共享式获取与释放锁以及查询同步队列中的等待线程情况。下面是相关的模板方法:

方法名称描述void acquire(int)独占式获取锁,如果当前线程成功获取锁,那么方法就返回,否则会将当前线程放入同步队列等待。该方法会调用重写的 tryAcquire(int arg) 方法判断是否可以获得锁void acquireInterruptibly(int)和 acquire(int) 相同,但是该方法响应中断,当线程在同步队列中等待时,如果线程被中断,会抛出 InterruptedException 异常并返回。boolean tryAcquireNanos(int, long)在 acquireInterruptibly(int) 基础上添加了超时控制,同时支持中断和超时,当在指定时间内没有获得锁时,会返回 false,获取到了返回 truevoid acquireShared(int)共享式获得锁,如果成功获得锁就返回,否则将当前线程放入同步队列等待,与独占式获取锁的不同是,同一时刻可以有多个线程获得共享锁,该方法调用 tryAcquireShared(int)acquireSharedInterruptibly(int)与 acquireShared(int) 相同,该方法响应中断tryAcquireSharedNanos(int, long)在 acquireSharedInterruptibly(int) 基础上添加了超时控制boolean release(int)独占式释放锁,该方法会在释放锁后,将同步队列中第一个等待节点唤醒boolean releaseShared(int)共享式释放锁CollectiongetQueuedThreads()获得同步队列中等待的线程集合

自定义组件通过使用同步器提供的模板方法来实现自己的同步语义。下面我们通过两个示例,看下如何借助于 AQS 来实现锁的同步语义。我们首先实现一个独占锁(排它锁),独占锁就是说在某个时刻内,只能有一个线程持有独占锁,只有持有锁的线程释放了独占锁,其他线程才可以获取独占锁。下面是具体实现:

import java.util.concurrent.TimeUnit;import java.util.concurrent.locks.AbstractQueuedSynchronizer;import java.util.concurrent.locks.Condition;import java.util.concurrent.locks.Lock;/** * Created by Jikai Zhang on 2017/4/6. * <p> * 自定义独占锁 */public class Mutex implements Lock {    // 通过继承 AQS,自定义同步器    private static class Sync extends AbstractQueuedSynchronizer {        // 当前线程是否被独占        @Override        protected boolean isHeldExclusively() {            return getState() == 1;        }        // 尝试获得锁        @Override        protected boolean tryAcquire(int arg) {            // 只有当 state 的值为 0,并且线程成功将 state 值修改为 1 之后,线程才可以获得独占锁            if (compareAndSetState(0, 1)) {                setExclusiveOwnerThread(Thread.currentThread());                return true;            }            return false;        }        @Override        protected boolean tryRelease(int arg) {            // state 为 0 说明当前同步块中没有锁了,无需释放            if (getState() == 0) {                throw new IllegalMonitorStateException();            }            // 将独占的线程设为 null            setExclusiveOwnerThread(null);            // 将状态变量的值设为 0,以便其他线程可以成功修改状态变量从而获得锁            setState(0);            return true;        }        Condition newCondition() {            return new ConditionObject();        }    }    // 将操作代理到 Sync 上    private final Sync sync = new Sync();    @Override    public void lock() {        sync.acquire(1);    }    @Override    public void lockInterruptibly() throws InterruptedException {        sync.acquireInterruptibly(1);    }    @Override    public boolean tryLock() {        return sync.tryAcquire(1);    }    @Override    public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {        return sync.tryAcquireNanos(1, unit.toNanos(time));    }    @Override    public void unlock() {        sync.release(1);    }    @Override    public Condition newCondition() {        return sync.newCondition();    }    public boolean hasQueuedThreads() {        return sync.hasQueuedThreads();    }    public boolean isLocked() {        return sync.isHeldExclusively();    }    public static void withoutMutex() throws InterruptedException {        System.out.println("Without mutex: ");        int threadCount = 2;        final Thread threads[] = new Thread[threadCount];        for (int i = 0; i < threads.length; i++) {            final int index = i;            threads[i] = new Thread(new Runnable() {                @Override                public void run() {                    for (int j = 0; j < 100000; j++) {                        if (j % 20000 == 0) {                            System.out.println("Thread-" + index + ": j =" + j);                        }                    }                }            });        }        for (int i = 0; i < threads.length; i++) {            threads[i].start();        }        for (int i = 0; i < threads.length; i++) {            threads[i].join();        }    }    public static void withMutex() {        System.out.println("With mutex: ");        final Mutex mutex = new Mutex();        int threadCount = 2;        final Thread threads[] = new Thread[threadCount];        for (int i = 0; i < threads.length; i++) {            final int index = i;            threads[i] = new Thread(new Runnable() {                @Override                public void run() {                    mutex.lock();                    try {                        for (int j = 0; j < 100000; j++) {                            if (j % 20000 == 0) {                                System.out.println("Thread-" + index + ": j =" + j);                            }                        }                    } finally {                        mutex.unlock();                    }                }            });        }        for (int i = 0; i < threads.length; i++) {            threads[i].start();        }    }    public static void main(String[] args) throws InterruptedException {        withoutMutex();        System.out.println();        withMutex();    }}

程序的运行结果如下面所示。我们看到使用了 Mutex 之后,线程 0 和线程 1 不会再交替执行,而是当一个线程执行完,另外一个线程再执行。

Without mutex:Thread-0: j =0Thread-1: j =0Thread-0: j =20000Thread-1: j =20000Thread-0: j =40000Thread-1: j =40000Thread-0: j =60000Thread-1: j =60000Thread-1: j =80000Thread-0: j =80000With mutex:Thread-0: j =0Thread-0: j =20000Thread-0: j =40000Thread-0: j =60000Thread-0: j =80000Thread-1: j =0Thread-1: j =20000Thread-1: j =40000Thread-1: j =60000Thread-1: j =80000

下面在看一个共享锁的示例。在该示例中,我们定义两个共享资源,即同一时间内允许两个线程同时执行。我们将同步变量的初始状态 state 设为 2,当一个线程获取了共享锁之后,将 state 减 1,线程释放了共享锁后,将 state 加 1。状态的合法范围是 0、1 和 2,其中 0 表示已经资源已经用光了,此时线程再要获得共享锁就需要进入同步序列等待。下面是具体实现:

import java.util.concurrent.TimeUnit;import java.util.concurrent.locks.AbstractQueuedSynchronizer;import java.util.concurrent.locks.Condition;import java.util.concurrent.locks.Lock;/** * Created by Jikai Zhang on 2017/4/9. * <p> * 自定义共享锁 */public class TwinsLock implements Lock {    private static class Sync extends AbstractQueuedSynchronizer {        public Sync(int resourceCount) {            if (resourceCount <= 0) {                throw new IllegalArgumentException("resourceCount must be larger than zero.");            }            // 设置可以共享的资源总数            setState(resourceCount);        }        @Override        protected int tryAcquireShared(int reduceCount) {            // 使用尝试获得资源,如果成功修改了状态变量(获得了资源)            // 或者资源的总量小于 0(没有资源了),则返回。            for (; ; ) {                int lastCount = getState();                int newCount = lastCount - reduceCount;                if (newCount < 0 || compareAndSetState(lastCount, newCount)) {                    return newCount;                }            }        }        @Override        protected boolean tryReleaseShared(int returnCount) {            // 释放共享资源,因为可能有多个线程同时执行,所以需要使用 CAS 操作来修改资源总数。            for (; ; ) {                int lastCount = getState();                int newCount = lastCount + returnCount;                if (compareAndSetState(lastCount, newCount)) {                    return true;                }            }        }    }    // 定义两个共享资源,说明同一时间内可以有两个线程同时运行    private final Sync sync = new Sync(2);    @Override    public void lock() {        sync.acquireShared(1);    }    @Override    public void lockInterruptibly() throws InterruptedException {        sync.acquireInterruptibly(1);    }    @Override    public boolean tryLock() {        return sync.tryAcquireShared(1) >= 0;    }    @Override    public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {        return sync.tryAcquireNanos(1, unit.toNanos(time));    }    @Override    public void unlock() {        sync.releaseShared(1);    }    @Override    public Condition newCondition() {        throw new UnsupportedOperationException();    }    public static void main(String[] args) {        final Lock lock = new TwinsLock();        int threadCounts = 10;        Thread threads[] = new Thread[threadCounts];        for (int i = 0; i < threadCounts; i++) {            final int index = i;            threads[i] = new Thread(new Runnable() {                @Override                public void run() {                    for (int i = 0; i < 5; i++) {                        lock.lock();                        try {                            TimeUnit.SECONDS.sleep(1);                            System.out.println(Thread.currentThread().getName());                        } catch (InterruptedException e) {                            e.printStackTrace();                        } finally {                            lock.unlock();                        }                        try {                            TimeUnit.SECONDS.sleep(1);                        } catch (InterruptedException e) {                            e.printStackTrace();                        }                    }                }            });        }        for (int i = 0; i < threadCounts; i++) {            threads[i].start();        }    }}

运行程序,我们会发现程序每次都会同时打印两条语句,如下面的形式,证明同时有两个线程在执行。

Thread-0Thread-1Thread-3Thread-2Thread-8Thread-4Thread-3Thread-6

CAS 操作

CAS(Compare and Swap),比较并交换,通过利用底层硬件平台的特性,实现原子性操作。CAS 操作涉及到3个操作数,内存值 V,旧的期望值 A,需要修改的新值 B。当且仅当预期值 A 和 内存值 V 相同时,才将内存值 V 修改为 B,否则什么都不做。CAS 操作类似于执行了下面流程

if(oldValue == memory[valueAddress]) {    memory[valueAddress] = newValue;}

在上面的流程中,其实涉及到了两个操作,比较以及替换,为了确保程序正确,需要确保这两个操作的原子性(也就是说确保这两个操作同时进行,中间不会有其他线程干扰)。现在的 CPU 中,提供了相关的底层 CAS 指令,即 CPU 底层指令确保了比较和交换两个操作作为一个原子操作进行(其实在这一点上还是有排他锁的. 只是比起用synchronized, 这里的排他时间要短的多.),Java 中的 CAS 函数是借助于底层的 CAS 指令来实现的。更多关于 CPU 底层实现的原理可以参考 这篇文章。我们来看下 Java 中对于 CAS 函数的定义:

/** * Atomically update Java variable to x if it is currently * holding expected. * @return true if successful */public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);/** * Atomically update Java variable to x if it is currently * holding expected. * @return true if successful */public final native boolean compareAndSwapInt(Object o, long offset, int expected, int x);/** * Atomically update Java variable to x if it is currently * holding expected. * @return true if successful */public final native boolean compareAndSwapLong(Object o, long offset, long expected, long x);

上面三个函数定义在 sun.misc.Unsafe 类中,使用该类可以进行一些底层的操作,例如直接操作原生内存,更多关于 Unsafe 类的文章可以参考 这篇。以 compareAndSwapInt 为例,我们看下如何使用 CAS 函数:

import sun.misc.Unsafe;import java.lang.reflect.Field;/** * Created by Jikai Zhang on 2017/4/8. */public class CASIntTest {    private volatile int count = 0;    private static final Unsafe unsafe = getUnsafe();    private static final long offset;    // 获得 count 属性在 CASIntTest 中的偏移量(内存地址偏移)    static {        try {            offset = unsafe.objectFieldOffset(CASIntTest.class.getDeclaredField("count"));        } catch (NoSuchFieldException e) {            throw new Error(e);        }    }    // 通过反射的方式获得 Unsafe 类    public static Unsafe getUnsafe() {        Unsafe unsafe = null;        try {            Field theUnsafe = Unsafe.class.getDeclaredField("theUnsafe");            theUnsafe.setAccessible(true);            unsafe = (Unsafe) theUnsafe.get(null);        } catch (NoSuchFieldException | IllegalAccessException e) {            e.printStackTrace();        }        return unsafe;    }    public void increment() {        int previous = count;        unsafe.compareAndSwapInt(this, offset, previous, previous + 1);    }    public static void main(String[] args) {        CASIntTest casIntTest = new CASIntTest();        casIntTest.increment();        System.out.println(casIntTest.count);    }}

在 CASIntTest 类中,我们定义一个 count 变量,其中 increment 方法是将 count 的值加 1。下面是 increase 方法的代码:

int previous = count;unsafe.compareAndSwapInt(this, offset, previous, previous + 1);

在没有线程竞争的条件下,该代码执行的结果是将 count 变量的值加 1(多个线程竞争可能会有线程执行失败),但是在 compareAndSwapInt 函数中,我们并没有传入 count 变量,那么函数是如何修改的 count 变量值?其实我们往 compareAndSwapInt 函数中传入了 count 变量在堆内存中的地址,函数直接修改了 count 变量所在内存区域。count 属性在堆内存中的地址是由 CASIntTest 实例的起始内存地址和 count 属性相对于起始内存的偏移量决定的。其中对象属性在对象中的偏移量通过 objectFieldOffset 函数获得,函数原型如下所示。该函数接受一个 Filed 类型的参数,返回该 Filed 属性在对象中的偏移量。

/** * Report the location of a given static field, in conjunction with {@link * #staticFieldBase}. * Do not expect to perform any sort of arithmetic on this offset; * it is just a cookie which is passed to the unsafe heap memory accessors. * * Any given field will always have the same offset, and no two distinct * fields of the same class will ever have the same offset. * * As of 1.4.1, offsets for fields are represented as long values, * although the Sun JVM does not use the most significant 32 bits. * It is hard to imagine a JVM technology which needs more than * a few bits to encode an offset within a non-array object, * However, for consistency with other methods in this class, * this method reports its result as a long value. */public native long objectFieldOffset(Field f);

下面我们再看一下 compareAndSwapInt 的函数原型。我们知道 CAS 操作需要知道 3 个信息:内存中的值,期望的旧值以及要修改的新值。通过前面的分析,我们知道通过 o 和 offset 我们可以确定属性在内存中的地址,也就是知道了属性在内存中的值。expected 对应期望的旧址,而 x 就是要修改的新值。

public final native boolean compareAndSwapInt(Object o, long offset, int expected, int x);

compareAndSwapInt 函数首先比较一下 expected 是否和内存中的值相同,如果不同证明其他线程修改了属性值,那么就不会执行更新操作,但是程序如果就此返回了,似乎不太符合我们的期望,我们是希望程序可以执行更新操作的,如果其他线程先进行了更新,那么就在更新后的值的基础上进行修改,所以我们一般使用循环配合 CAS 函数,使程序在更新操作完成之后再返回,如下所示:

long before = counter;while (!unsafe.compareAndSwapLong(this, offset, before, before + 1)) {    before = counter;}

下面是使用 CAS 函数实现计数器的一个实例:

import sun.misc.Unsafe;import java.lang.reflect.Field;/** * Created by Jikai Zhang on 2017/4/8. */public class CASCounter {    // 通过反射的方式获得 Unsafe 类    public static Unsafe getUnsafe() {        Unsafe unsafe = null;        try {            Field theUnsafe = Unsafe.class.getDeclaredField("theUnsafe");            theUnsafe.setAccessible(true);            unsafe = (Unsafe) theUnsafe.get(null);        } catch (NoSuchFieldException | IllegalAccessException e) {            e.printStackTrace();        }        return unsafe;    }    private volatile long counter = 0;    private static final long offset;    private static final Unsafe unsafe = getUnsafe();    static {        try {            offset = unsafe.objectFieldOffset(CASCounter.class.getDeclaredField("counter"));        } catch (NoSuchFieldException e) {            throw new Error(e);        }    }    public void increment() {        long before = counter;        while (!unsafe.compareAndSwapLong(this, offset, before, before + 1)) {            before = counter;        }    }    public long getCounter() {        return counter;    }    private static long intCounter = 0;    public static void main(String[] args) throws InterruptedException {        int threadCount = 10;        Thread threads[] = new Thread[threadCount];        final CASCounter casCounter = new CASCounter();        for (int i = 0; i < threadCount; i++) {            threads[i] = new Thread(new Runnable() {                @Override                public void run() {                    for (int i = 0; i < 10000; i++) {                        casCounter.increment();                        intCounter++;                    }                }            });            threads[i].start();        }        for(int i = 0; i < threadCount; i++) {            threads[i].join();        }        System.out.printf("CASCounter is %d \nintCounter is %d\n", casCounter.getCounter(), intCounter);    }}

在 AQS 中,对原始的 CAS 函数封装了一下,省去了获得变量地址的步骤,如下面的形式:

private static final long waitStatusOffset;static {    try {        waitStatusOffset = unsafe.objectFieldOffset(Node.class.getDeclaredField("waitStatus"));    } catch (Exception ex) {        throw new Error(ex);    }}private static final boolean compareAndSetWaitStatus(Node node, int expect, int update) {    return unsafe.compareAndSwapInt(node, waitStatusOffset, expect, update);}

同步队列

AQS 依赖内部的同步队列(一个 FIFO的双向队列)来完成同步状态的管理,当前线程获取同步状态失败时,同步器会将当前线程以及等待状态等信息构造成一个节点(Node)并将其加入同步队列,同时会阻塞当前线程,当同步状态释放时,会把队列中第一个等待节点线程唤醒(下图中的 Node1),使其再次尝试获取同步状态。同步队列的结构如下所示:

图片来自 http://www.infoq.com/cn/articles/jdk1.8-abstractqueuedsynchronizer

Head 节点本身不保存等待线程的信息,它通过 next 变量指向第一个保存线程等待信息的节点(Node1)。当线程被唤醒之后,会删除 Head 节点,而唤醒线程所在的节点会设置为 Head 节点(Node1 被唤醒之后,Node1会被置为 Head 节点)。下面我们看下 JDK 中同步队列的实现。

Node 类

首先看在节点所对应的 Node 类:

static final class Node {    /**     * 标志是独占式模式还是共享模式     */    static final Node SHARED = new Node();    static final Node EXCLUSIVE = null;    /**     * 线程等待状态的有效值     */    static final int CANCELLED = 1;    static final int SIGNAL = -1;    static final int CONDITION = -2;    static final int PROPAGATE = -3;    /**     * 线程状态,合法值为上面 4 个值中的一个     */    volatile int waitStatus;    /**     * 当前节点的前置节点     */    volatile Node prev;    /**     * 当前节点的后置节点     */    volatile Node next;    /**     * 当前节点所关联的线程     */    volatile Thread thread;    /**     * 指向下一个在某个条件上等待的节点,或者指向 SHARE 节点,表明当前处于共享模式     */    Node nextWaiter;    final boolean isShared() {        return nextWaiter == SHARED;    }    final Node predecessor() throws NullPointerException {        Node p = prev;        if (p == null)            throw new NullPointerException();        else            return p;    }    Node() { // Used to establish initial head or SHARED marker    }    Node(Thread thread, Node mode) { // Used by addWaiter        this.nextWaiter = mode;        this.thread = thread;    }    Node(Thread thread, int waitStatus) { // Used by Condition        this.waitStatus = waitStatus;        this.thread = thread;    }}

在 Node 类中定义了四种等待状态:

  • CANCELED: 1,因为等待超时 (timeout)或者中断(interrupt),节点会被置为取消状态。处于取消状态的节点不会再去竞争锁,也就是说不会再被阻塞。节点会一直保持取消状态,而不会转换为其他状态。处于 CANCELED 的节点会被移出队列,被 GC 回收。
  • SIGNAL: -1,表明当前的后继结点正在或者将要被阻塞(通过使用 LockSupport.pack 方法),因此当前的节点被释放(release)或者被取消时(cancel)时,要唤醒它的后继结点(通过 LockSupport.unpark 方法)。
  • CONDITION: -2,表明当前节点在条件队列中,因为等待某个条件而被阻塞。
  • PROPAGATE: -3,在共享模式下,可以认为资源有多个,因此当前线程被唤醒之后,可能还有剩余的资源可以唤醒其他线程。该状态用来表明后续节点会传播唤醒的操作。需要注意的是只有头节点才可以设置为该状态(This is set (for head node only) in doReleaseShared to ensure propagation continues, even if other operations have since intervened.)。
  • 0:新创建的节点会处于这种状态

独占锁的获取和释放

我们首先看下独占锁的获取和释放过程

独占锁获取

下面是获取独占锁的流程图:

我们通过 acquire 方法来获取独占锁,下面是方法定义

public final void acquire(int arg) {    // 首先尝试获取锁,如果获取失败,会先调用 addWaiter 方法创建节点并追加到队列尾部    // 然后调用 acquireQueued 阻塞或者循环尝试获取锁    if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg)){        // 在 acquireQueued 中,如果线程是因为中断而退出的阻塞状态会返回 true        // 这里的 selfInterrupt 主要是为了恢复线程的中断状态        selfInterrupt();    }}

acquire 会首先调用 tryAcquire 方法来获得锁,该方法需要我们来实现,这个在前面已经提过了。如果没有获取锁,会调用 addWaiter 方法创建一个和当前线程关联的节点追加到同步队列的尾部,我们调用 addWaiter 时传入的是 Node.EXCLUSIVE,表明当前是独占模式。下面是 addWaiter 的具体实现

private Node addWaiter(Node mode) {    Node node = new Node(Thread.currentThread(), mode);    // tail 指向同步队列的尾节点    Node pred = tail;    // Try the fast path of enq; backup to full enq on failure    if (pred != null) {        node.prev = pred;        if (compareAndSetTail(pred, node)) {            pred.next = node;            return node;        }    }    enq(node);    return node;}

addWaiter 方法会首先调用 if 方法,来判断能否成功将节点添加到队列尾部,如果添加失败,再调用 enq 方法(使用循环不断重试)进行添加,下面是 enq 方法的实现:

private Node enq(final Node node) {    for (;;) {        Node t = tail;        // 同步队列采用的懒初始化(lazily initialized)的方式,        // 初始时 head 和 tail 都会被设置为 null,当一次被访问时        // 才会创建 head 对象,并把尾指针指向 head。        if (t == null) { // Must initialize            if (compareAndSetHead(new Node()))                tail = head;        } else {            node.prev = t;            if (compareAndSetTail(t, node)) {                t.next = node;                return t;            }        }    }}

addWaiter 仅仅是将节点加到了同步队列的末尾,并没有阻塞线程,线程阻塞的操作是在 acquireQueued 方法中完成的,下面是 acquireQueued 的实现:

final boolean acquireQueued(final Node node, int arg) {    boolean failed = true;    try {        boolean interrupted = false;        for (;;) {            final Node p = node.predecessor();            // 如果当前节点的前继节点是 head,就使用自旋(循环)的方式不断请求锁            if (p == head && tryAcquire(arg)) {                // 成功获得锁,将当前节点置为 head 节点,同时删除原 head 节点                setHead(node);                p.next = null; // help GC                failed = false;                return interrupted;            }            // shouldParkAfterFailedAcquire 检查是否可以挂起线程,            // 如果可以挂起进程,会调用 parkAndCheckInterrupt 挂起线程,            // 如果 parkAndCheckInterrupt 返回 true,表明当前线程是因为中断而退出挂起状态的,            // 所以要将 interrupted 设为 true,表明当前线程被中断过            if (shouldParkAfterFailedAcquire(p, node) &&                parkAndCheckInterrupt())                interrupted = true;        }    } finally {        if (failed)            cancelAcquire(node);    }}

acquireQueued 会首先检查当前节点的前继节点是否为 head,如果为 head,将使用自旋的方式不断的请求锁,如果不是 head,则调用 shouldParkAfterFailedAcquire 查看是否应该挂起当前节点关联的线程,下面是 shouldParkAfterFailedAcquire 的实现:

private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {    // 当前节点的前继节点的等待状态    int ws = pred.waitStatus;    // 如果前继节点的等待状态为 SIGNAL 我们就可以将当前节点对应的线程挂起    if (ws == Node.SIGNAL)        return true;    if (ws > 0) {        // ws 大于 0,表明当前线程的前继节点处于 CANCELED 的状态,        // 所以我们需要从当前节点开始往前查找,直到找到第一个不为        // CAECELED  状态的节点        do {            node.prev = pred = pred.prev;        } while (pred.waitStatus > 0);        pred.next = node;    } else {        /*         * waitStatus must be 0 or PROPAGATE.  Indicate that we         * need a signal, but don't park yet.  Caller will need to         * retry to make sure it cannot acquire before parking.         */        compareAndSetWaitStatus(pred, ws, Node.SIGNAL);    }    return false;}

shouldParkAfterFailedAcquire 会检查前继节点的等待状态,如果前继节点状态为 SIGNAL,则可以将当前节点关联的线程挂起,如果不是 SIGNAL,会做一些其他的操作,在当前循环中不会挂起线程。如果确定了可以挂起线程,就调用 parkAndCheckInterrupt 方法对线程进行阻塞:

private final boolean parkAndCheckInterrupt() {    // 挂起当前线程    LockSupport.park(this);    // 可以通过调用 interrupt 方法使线程退出 park 状态,    // 为了使线程在后面的循环中还可以响应中断,会重置线程的中断状态。    // 这里使用 interrupted 会先返回线程当前的中断状态,然后将中断状态重置为 false,    // 线程的中断状态会返回给上层调用函数,在线程获得锁后,    // 如果发现线程曾被中断过,会将中断状态重新设为 true    return Thread.interrupted();}

独占锁释放

下面是释放独占锁的流程:

通过 release 方法,我们可以释放互斥锁。下面是 release 方法的实现:

public final boolean release(int arg) {    if (tryRelease(arg)) {        Node h = head;        // waitStatus 为 0,证明是初始化的空队列或者后继结点已经被唤醒了        if (h != null && h.waitStatus != 0)            unparkSuccessor(h);        return true;    }    return false;}

在独占模式下释放锁时,是没有其他线程竞争的,所以处理会简单一些。首先尝试释放锁,如果失败就直接返回(失败不是因为多线程竞争,而是线程本身就不拥有锁)。如果成功的话,会检查 h 的状态,然后调用 unparkSuccessor 方法来唤醒后续线程。下面是 unparkSuccessor 的实现:

private void unparkSuccessor(Node node) {    int ws = node.waitStatus;    // 将 head 节点的状态置为 0,表明当前节点的后续节点已经被唤醒了,    // 不需要再次唤醒,修改 ws 状态主要作用于 release 的判断    if (ws < 0)        compareAndSetWaitStatus(node, ws, 0);    /*     * Thread to unpark is held in successor, which is normally     * just the next node.  But if cancelled or apparently null,     * traverse backwards from tail to find the actual     * non-cancelled successor.     */    Node s = node.next;    if (s == null || s.waitStatus > 0) {        s = null;        for (Node t = tail; t != null && t != node; t = t.prev)            if (t.waitStatus <= 0)                s = t;    }    if (s != null)        LockSupport.unpark(s.thread);}

在 unparkSuccessor 方法中,如果发现头节点的后继结点为 null 或者处于 CANCELED 状态,会从尾部往前找(在节点存在的前提下,这样一定能找到)离头节点最近的需要唤醒的节点,然后唤醒该节点。

共享锁获取和释放

独占锁的流程和原理比较容易理解,因为只有一个锁,但是共享锁的处理就相对复杂一些了。在独占锁中,只有在释放锁之后,才能唤醒等待的线程,而在共享模式中,获取锁和释放锁之后,都有可能唤醒等待的线程。如果想要理清共享锁的工作过程,必须将共享锁的获取和释放结合起来看。这里我们先看一下共享锁的释放过程,只有明白了释放过程做了哪些工作,才能更好的理解获取锁的过程。

共享锁释放

下面是释放共享锁的流程:

通过 releaseShared 方法会释放共享锁,下面是具体的实现:

public final boolean releaseShared(int releases) {    if (tryReleaseShared(arg)) {        doReleaseShared();        return true;    }    return false;}

releases 是要释放的共享资源数量,其中 tryReleaseShared 的方法由我们自己重写,该方法的主要功能就是修改共享资源的数量(state + releases),因为可能会有多个线程同时释放资源,所以实现的时候,一般采用循环加 CAS 操作的方式,如下面的形式:

protected boolean tryReleaseShared(int releases) {    // 释放共享资源,因为可能有多个线程同时执行,所以需要使用 CAS 操作来修改资源总数。    for (;;) {        int lastCount = getState();        int newCount = lastCount + releases;        if (compareAndSetState(lastCount, newCount)) {            return true;        }    }}

当共享资源数量修改了之后,会调用 doReleaseShared 方法,该方法主要唤醒同步队列中的第一个等待节点(head.next),下面是具体实现:

private void doReleaseShared() {    /*     * Ensure that a release propagates, even if there are other     * in-progress acquires/releases.  This proceeds in the usual     * way of trying to unparkSuccessor of head if it needs     * signal. But if it does not, status is set to PROPAGATE to     * ensure that upon release, propagation continues.     * Additionally, we must loop in case a new node is added     * while we are doing this. Also, unlike other uses of     * unparkSuccessor, we need to know if CAS to reset status     * fails, if so rechecking.     */    for (;;) {        Node h = head;        // head = null 说明没有初始化,head = tail 说明同步队列中没有等待节点        if (h != null && h != tail) {            // 查看当前节点的等待状态            int ws = h.waitStatus;            // 我们在前面说过,SIGNAL说明有后续节点需要唤醒            if (ws == Node.SIGNAL) {                /*                 * 将当前节点的值设为 0,表明已经唤醒了后继节点                 * 可能会有多个线程同时执行到这一步,所以使用 CAS 保证只有一个线程能修改成功,                 * 从而执行 unparkSuccessor,其他的线程会执行 continue 操作                 */                if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))                    continue; // loop to recheck cases                unparkSuccessor(h);            } else if (ws == 0 && !compareAndSetWaitStatus(h, 0, Node.PROPAGATE)) {                /*                 * ws 等于 0,说明无需唤醒后继结点(后续节点已经被唤醒或者当前节点没有被阻塞的后继结点),                 * 也就是这一次的调用其实并没有执行唤醒后继结点的操作。就类似于我只需要一张优惠券,                 * 但是我的两个朋友,他们分别给我了一张,因此我就剩余了一张。然后我就将这张剩余的优惠券                 * 送(传播)给其他人使用,因此这里将节点置为可传播的状态(PROPAGATE)                 */                continue; // loop on failed CAS            }        }        if (h == head) // loop if head changed            break;    }}

从上面的实现中,doReleaseShared 的主要作用是用来唤醒阻塞的节点并且一次只唤醒一个,让该节点关联的线程去重新竞争锁,它既不修改同步队列,也不修改共享资源。

当多个线程同时释放资源时,可以确保两件事:

  1. 共享资源的数量能正确的累加
  2. 至少有一个线程被唤醒,其实只要确保有一个线程被唤醒就可以了,即便唤醒了多个线程,在同一时刻,也只能有一个线程能得到竞争锁的资格,在下面我们会看到。

所以释放锁做的主要工作还是修改共享资源的数量。而有了多个共享资源后,如何确保同步队列中的多个节点可以获取锁,是由获取锁的逻辑完成的。下面看下共享锁的获取。

共享锁的获取

下面是获取共享锁的流程

通过 acquireShared 方法,我们可以申请共享锁,下面是具体的实现:

public final void acquireShared(int arg) {    // 如果返回结果小于 0,证明没有获取到共享资源    if (tryAcquireShared(arg) < 0)        doAcquireShared(arg);}

如果没有获取到共享资源,就会执行 doAcquireShared 方法,下面是该方法的具体实现:

private void doAcquireShared(int arg) {    final Node node = addWaiter(Node.SHARED);    boolean failed = true;    try {        boolean interrupted = false;        for (;;) {            final Node p = node.predecessor();            if (p == head) {                int r = tryAcquireShared(arg);                if (r >= 0) {                    setHeadAndPropagate(node, r);                    p.next = null; // help GC                    if (interrupted)                        selfInterrupt();                    failed = false;                    return;                }            }            if (shouldParkAfterFailedAcquire(p, node) &&                parkAndCheckInterrupt())                interrupted = true;        }    } finally {        if (failed)            cancelAcquire(node);    }}

从上面的代码中可以看到,只有前置节点为 head 的节点才有可能去竞争锁,这点和独占模式的处理是一样的,所以即便唤醒了多个线程,也只有一个线程能进入竞争锁的逻辑,其余线程会再次进入 park 状态,当线程获取到共享锁之后,会执行 setHeadAndPropagate 方法,下面是具体的实现:

private void setHeadAndPropagate(Node node, long propagate) {    // 备份一下头节点    Node h = head; // Record old head for check below    /*     * 移除头节点,并将当前节点置为头节点     * 当执行完这一步之后,其实队列的头节点已经发生改变,     * 其他被唤醒的线程就有机会去获取锁,从而并发的执行该方法,     * 所以上面备份头节点,以便下面的代码可以正确运行     */    setHead(node);    /*     * Try to signal next queued node if:     *   Propagation was indicated by caller,     *     or was recorded (as h.waitStatus either before     *     or after setHead) by a previous operation     *     (note: this uses sign-check of waitStatus because     *      PROPAGATE status may transition to SIGNAL.)     * and     *   The next node is waiting in shared mode,     *     or we don't know, because it appears null     *     * The conservatism in both of these checks may cause     * unnecessary wake-ups, but only when there are multiple     * racing acquires/releases, so most need signals now or soon     * anyway.     */     /*      * 判断是否需要唤醒后继结点,propagate > 0 说明共享资源有剩余,      * h.waitStatus < 0,表明当前节点状态可能为 SIGNAL,CONDITION,PROPAGATE      */    if (propagate > 0 || h == null || h.waitStatus < 0 ||        (h = head) == null || h.waitStatus < 0) {        Node s = node.next;        // 只有 s 不处于独占模式时,才去唤醒后继结点        if (s == null || s.isShared())            doReleaseShared();    }}

判断后继结点是否需要唤醒的条件是十分宽松的,也就是一定包含必要的唤醒,但是也有可能会包含不必要的唤醒。从前面我们可以知道 doReleaseShared 函数的主要作用是唤醒后继结点,它既不修改共享资源,也不修改同步队列,所以即便有不必要的唤醒也是不影响程序正确性的。如果没有共享资源,节点会再次进入等待状态。

到了这里,脉络就比较清晰了,当一个节点获取到共享锁之后,它除了将自身设为 head 节点之外,还会判断一下是否满足唤醒后继结点的条件,如果满足,就唤醒后继结点,后继结点获取到锁之后,会重复这个过程,直到判断条件不成立。就类似于考试时从第一排往最后一排传卷子,第一排先留下一份,然后将剩余的传给后一排,后一排会重复这个过程。如果传到某一排卷子没了,那么位于这排的人就要等待,直到老师又给了他新的卷子。

中断

在获取锁时还可以设置响应中断,独占锁和共享锁的处理逻辑类似,这里我们以独占锁为例。使用 acquireInterruptibly 方法,在获取独占锁时可以响应中断,下面是具体的实现:

public final void acquireInterruptibly(int arg) throws InterruptedException {    if (Thread.interrupted())        throw new InterruptedException();    if (!tryAcquire(arg))        doAcquireInterruptibly(arg);}private void doAcquireInterruptibly(int arg) throws InterruptedException {    final Node node = addWaiter(Node.EXCLUSIVE);    boolean failed = true;    try {        for (;;) {            final Node p = node.predecessor();            if (p == head && tryAcquire(arg)) {                setHead(node);                p.next = null; // help GC                failed = false;                return;            }            if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) {                // 这里会抛出异常                throw new InterruptedException();            }        }    } finally {        if (failed)            cancelAcquire(node);    }}

从上面的代码中我们可以看出,acquireInterruptibly 和 acquire 的逻辑类似,只是在下面的代码处有所不同:当线程因为中断而退出阻塞状态时,会直接抛出 InterruptedException 异常。

if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) {    // 这里会抛出异常    throw new InterruptedException();}

我们知道,不管是抛出异常还是方法返回,程序都会执行 finally 代码,而 failed 肯定为 true,所以抛出异常之后会执行 cancelAcquire 方法,cancelAcquire 方法主要将节点从同步队列中移除。下面是具体的实现:

private void cancelAcquire(Node node) {    // Ignore if node doesn't exist    if (node == null)        return;    node.thread = null;    // 跳过前面的已经取消的节点    Node pred = node.prev;    while (pred.waitStatus > 0)        node.prev = pred = pred.prev;    // 保存下 pred 的后继结点,以便 CAS 操作使用    // 因为可能存在已经取消的节点,所以 pred.next 不一等于 node    Node predNext = pred.next;    // Can use unconditional write instead of CAS here.    // After this atomic step, other Nodes can skip past us.    // Before, we are free of interference from other threads.    // 将节点状态设为 CANCELED    node.waitStatus = Node.CANCELLED;    // If we are the tail, remove ourselves.    if (node == tail && compareAndSetTail(node, pred)) {        compareAndSetNext(pred, predNext, null);    } else {        // If successor needs signal, try to set pred's next-link        // so it will get one. Otherwise wake it up to propagate.        int ws;        if (pred != head &&            ((ws = pred.waitStatus) == Node.SIGNAL ||                (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&            pred.thread != null) {            Node next = node.next;            if (next != null && next.waitStatus <= 0)                compareAndSetNext(pred, predNext, next);        } else {            unparkSuccessor(node);        }        node.next = node; // help GC    }}

从上面的代码可以看出,节点的删除分为三种情况:

  • 删除节点为尾节点,直接将该节点的第一个有效前置节点置为尾节点
  • 删除节点的前置节点为头节点,则对该节点执行 unparkSuccessor 操作
  • 删除节点为中间节点,结果如下图所示。下图中(1)表示同步队列的初始状态,假设删除 node2, node1 是正常节点(非 CANCELED),(2)就是删除 node2 后同步队列的状态,此时 node1 节点的后继已经变为 node3,也就是说当 node1 变为 head 之后,会直接唤醒 node3。当另外的一个节点中断之后再次执行 cancelAcquire,在执行下面的代码时,会使同步队列的状态由(2)变为(3),此时 node2 已经没有外界指针了,可以被回收了。如果一直没有另外一个节点中断,也就是同步队列一直处于(2)状态,那么需要等 node3 被回收之后,node2 才可以被回收。

    Node pred = node.prev;while (pred.waitStatus > 0)node.prev = pred = pred.prev;

超时

超时是在中断的基础上加了一层时间的判断,这里我们还是以独占锁为例。 tryAcquireNanos 支持获取锁的超时处理,下面是具体实现:

public final boolean tryAcquireNanos(int arg, long nanosTimeout) throws InterruptedException {    if (Thread.interrupted())        throw new InterruptedException();    return tryAcquire(arg) || doAcquireNanos(arg, nanosTimeout);}

当获取锁失败之后,会执行 doAcquireNanos 方法,下面是具体实现:

private boolean doAcquireNanos(int arg, long nanosTimeout) throws InterruptedException {    if (nanosTimeout <= 0 L)        return false;    // 线程最晚结束时间    final long deadline = System.nanoTime() + nanosTimeout;    final Node node = addWaiter(Node.EXCLUSIVE);    boolean failed = true;    try {        for (;;) {            final Node p = node.predecessor();            if (p == head && tryAcquire(arg)) {                setHead(node);                p.next = null; // help GC                failed = false;                return true;            }            // 判断是否超时,如果超时就返回            nanosTimeout = deadline - System.nanoTime();            if (nanosTimeout <= 0 L)                return false;            // 这里如果设定了一个阈值,如果超时的时间比阈值小,就认为            // 当前线程没必要阻塞,再执行几次 for 循环估计就超时了            if (shouldParkAfterFailedAcquire(p, node) && nanosTimeout > spinForTimeoutThreshold)                LockSupport.parkNanos(this, nanosTimeout);            if (Thread.interrupted())                throw new InterruptedException();        }    } finally {        if (failed)            cancelAcquire(node);    }}

当线程超时返回时,还是会执行 cancelAcquire 方法,cancelAcquire 的逻辑已经在前面说过了,这里不再赘述。

参考文章

  • Java 并发编程的艺术
  • Java Magic. Part 4: sun.misc.Unsafe
  • Java里的CompareAndSet(CAS)
  • ReentrantLock的lock-unlock流程详解
  • 深入JVM锁机制2-Lock
  • 深度解析Java 8:JDK1.8 AbstractQueuedSynchronizer的实现分析(上)
  • AbstractQueuedSynchronizer源码分析
  • 聊聊并发(十二)—AQS分析
  • AbstractQueuedSynchronizer (AQS)
  • 并发编程实践二:AbstractQueuedSynchronizer
0 0