[Leetcode] 95. Unique Binary Search Trees II 解题报告

来源:互联网 发布:网络科技产品 编辑:程序博客网 时间:2024/06/08 11:14

题目

Given an integer n, generate all structurally unique BST's (binary search trees) that store values 1...n.

For example,
Given n = 3, your program should return all 5 unique BST's shown below.

   1         3     3      2      1    \       /     /      / \      \     3     2     1      1   3      2    /     /       \                 \   2     1         2                 3

思路

1、深度优先搜索:如果要生成从1到n这n个树所构成的所有BST,按照其根节点的数值可以分为n种类型:即根节点的值为从1...n。假设我们要生成根节点为k (1 <= k <= n)的所有BST,那么首先需要生成范围为1到k-1的所有BST作为左子树,以及范围为k+1到n的所有BST作为右子树,然后两两组合就可以形成根节点为k的所有BST(注意思考这里面为什么可以保证没有重复的?)。

2、动态规划:在对深度优先搜索的思路进行分析的过程中我们发现,子问题有可能会被重复计算,从而造成效率降低。而动态规划刚好就是解决这一问题的利器!具体请见代码片段2。

3、深度优先搜索+记忆:我们可以建立一张二维表,然后存储子问题,这样在求解子问题之前,我们首先在二维表中查找,如果找到了,就可以直接返回结果,否则才开始计算。有人把这一思路叫做自顶向下的动态规划,但我觉得叫做带记忆的深度优先搜索更合适一些。

代码

1、深度优秀搜索:

/** * Definition for a binary tree node. * struct TreeNode { *     int val; *     TreeNode *left; *     TreeNode *right; *     TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */class Solution {public:    vector<TreeNode*> generateTrees(int n) {        vector<TreeNode*> tree;        if(n == 0) {            return tree;        }        dfs(1, n, tree);        return tree;    }private:    void dfs(int start, int end, vector<TreeNode*>& tree) {        if(start > end) {            tree.push_back(NULL);   // we must push a NULL value for integration            return;        }        for(int i = start; i <= end; ++i) {            // important notation: the left and right should be the copy, not the reference            vector<TreeNode*> left;            vector<TreeNode*> right;            dfs(start, i - 1, left);            dfs(i + 1, end, right);            for(int j = 0; j < left.size(); ++j) {                for(int k = 0; k < right.size(); ++k) {                    TreeNode* root = new TreeNode(i);                    root->left = left[j];                    root->right = right[k];                    tree.push_back(root);                }            }        }    }};

2、动态规划:

/** * Definition for a binary tree node. * struct TreeNode { *     int val; *     TreeNode *left; *     TreeNode *right; *     TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */class Solution {public:    vector<TreeNode*> generateTrees(int n) {        if(n == 0) {            return vector<TreeNode*>();        }    vector<vector<vector<TreeNode*>>> dp(n + 2, vector<vector<TreeNode*>>(n + 2, vector<TreeNode*>()));    for(int i = 1; i <= n + 1; ++i) {    dp[i][i].push_back(new TreeNode(i));        dp[i][i - 1].push_back(NULL);    }    for(int l = 2; l <= n; ++l) {                                               // length    for(int i = 1; i <= n - l + 1; ++i) {                                   // start    for(int j = i; j <= i + l - 1; ++j) {                               // end    for(int k = 0; k < dp[j + 1][i + l - 1].size(); ++k) {          // left subtree        for(int m = 0; m < dp[i][j - 1].size(); ++m) {              // right subtree            TreeNode *T = new TreeNode(j);            T->left = dp[i][j - 1][m];            T->right = dp[j + 1][i + l - 1][k];                dp[i][i + l - 1].push_back(T);            }    }    }    }    }    return dp[1][n];    }};
3、深度优先搜索+记忆:

/** * Definition for a binary tree node. * struct TreeNode { *     int val; *     TreeNode *left; *     TreeNode *right; *     TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */class Solution {public:    vector<TreeNode*> generateTrees(int n) {        vector<TreeNode*> tree;        if (n == 0) {            return tree;        }        vector<vector<vector<TreeNode*>>> dp(n,vector<vector<TreeNode*>>(n));        helper(1, n , tree, dp);        return tree;    }private:    void helper(int start, int end, vector<TreeNode*> &tree,vector<vector<vector<TreeNode*>>> &dp) {        if (start > end) {            tree.push_back(NULL);             return;        }        if (!dp[start - 1][end - 1].empty())  {            tree = dp[start - 1][end - 1];            return;        }        for (int i = start; i <= end; ++i) {            vector<TreeNode*> left, right;            helper(start, i - 1, left, dp);            helper(i + 1, end, right, dp);            for(int j = 0; j < left.size(); ++j) {                for (int k = 0; k < right.size(); ++k) {                    TreeNode* node = new TreeNode(i);                    node->left = left[j];                    node->right = right[k];                    tree.push_back(node);                }            }        }        dp[start - 1][end - 1] = tree;    }};

0 0
原创粉丝点击