Chrome源码剖析--Chrome的多线程模型 下

来源:互联网 发布:遗传算法最优路径 编辑:程序博客网 时间:2024/06/06 02:25

4. 定义IPC消息

如果你写过MFC程序,对MFC那里面一大堆宏有所忌惮的话,那么很不幸,在Chrome中的IPC消息定义中,你需要再吃一点苦头了,甚至,更苦大仇深一些;如果你曾经领教过用模板的特化偏特化做Traits、用模板做函数重载、用编译期的Tuple做变参数支持,之类机制的种种麻烦的话,那么,同样很遗憾,在Chrome中,你需要再感受一次。。。

不过,先让我们忘记宏和模板,看人肉一个消息,到底需要哪些操作。一个标准的IPC消息定义应该是类似于这样的:

 

class SomeMessage

    : public IPC::Message
{
public:
    enum { ID = ...; }
    SomeMessage(SomeType & data) 
        : IPC::Message(MSG_ROUTING_CONTROL, ID, ToString(data)) 
    {...}
    ...
};

 

大概意思是这样的,你需要从Message(或者其他子类)派生出一个子类,该子类有一个独一无二的ID值,该子类接受一个参数,你需要对这个参数进行序列化。两个麻烦的地方看的很清楚,如果生成独一无二的ID值?如何更方便的对任何参数可以自动的序列化?。。。

在Chrome中,解决这两个问题的答案,就是宏 + 模板。Chrome为每个消息安排了一种ID规格,用一个16bits的值来表示,高4位标识一个Channel,低12位标识一个消息的子id,也就是说,最多可以有16种Channel存在不同的进程之间,每一种Channel上可以定义4k的消息。目前,Chrome已经用掉了8种Channel(如果A、B进程需要双向通信,在Chrome中,这是两种不同的Channel,需要定义不同的消息,也就是说,一种双向的进程通信关系,需要耗费两个Channel种类...),他们已经觉得,16bits的ID格式不够用了,在将来的某一天,估计就被扩展成了32bits的。书归正传,Chrome是这么来定义消息ID的,用一个枚举类,让它从高到低往下走,就像这样:

 

enum SomeChannel_MsgType

{
    SomeChannelStart = 5 << 12,
    SomeChannelPreStart = (5 << 12) - 1,
    Msg1,
    Msg2,
    Msg3,
    ...
    MsgN,
    SomeChannelEnd
};

 

这是一个类型为5的Channel的消息ID声明,由于指明了最开始的两个值,所以后续枚举的值会依次递减,如此,只要维护Channel类型的唯一性,就可以维护所有消息ID的唯一性了(当然,前提是不能超过消息上限...)。但是,定义一个ID还不够,你还需要定义一个使用该消息ID的Message子类。这个步骤不但繁琐,最重要的,是违反了DIY原则,为了添加一个消息,你需要在两个地方开工干活,是可忍孰不可忍,于是Google祭出了宏这颗原子弹,需要定义消息,格式如下:

 

IPC_BEGIN_MESSAGES(PluginProcess, 3)
  
  IPC_MESSAGE_CONTROL2(PluginProcessMsg_CreateChannel,
                       int /* process_id */,
                       HANDLE /* renderer handle */)


  IPC_MESSAGE_CONTROL1(PluginProcessMsg_ShutdownResponse,
                       bool /* ok to shutdown */)


  IPC_MESSAGE_CONTROL1(PluginProcessMsg_PluginMessage,
                       std::vector<uint8> /* opaque data */)


  IPC_MESSAGE_CONTROL0(PluginProcessMsg_BrowserShutdown)


IPC_END_MESSAGES(PluginProcess)

 

这是Chrome中,定义PluginProcess消息的宏,我挖过来放在这了,如果你想添加一条消息,只需要添加一条类似与IPC_MESSAGE_CONTROL0东东即可,这说明它是一个控制消息,参数为0个。你基本上可以这样理解,IPC_BEGIN_MESSAGES就相当于完成了一个枚举开始的声明,然后中间的每一条,都会在枚举里面增加一个ID,并声明一个子类。这个一宏两吃,直逼北京烤鸭两吃的高超做法,可以参看ipc_message_macros.h,或者看下面一宏两吃的一个举例。。。

多次展开宏的技巧

这是Chrome中用到的一个技巧,定义一次宏,展开多段代码,我孤陋寡闻,第一次见,一个类似的例子,如下:

首先,定义一个macro.h,里面放置宏的定义:

 

#undef SUPER_MACRO

#if defined(FIRST_TIME)
#undef FIRST_TIME

#define SUPER_MACRO(label, type) /
enum IDs { /
label##__ID = 10 /
};

#elif defined(SECOND_TIME)
#undef SECOND_TIME

#define SUPER_MACRO(label, type) /
class TestClass /
{ /
public: /
enum {ID = label##__ID}; /
TestClass(type value) : _value(value) {} /
type _value; /
};

#endif

 

可以看到,这个头文件是可重入的,每一次先undef掉之前的定义,然后判断进行新的定义。然后,你可以创建一个use_macro.h文件,利用这个宏,定义具体内容:

#include "macros.h"

SUPER_MACRO(Test, int)

这个头文件在利用宏的部分不需要放到ifundef...define...这样的头文件保护中,目的就是为了可重入。在主函数中,你可以多次define + include,实现多次展开的目的:

 

#define FIRST_TIME
#include "use_macro.h"

#define SECOND_TIME
#include "use_macro.h"

#include <iostream>

int _tmain(int argc, _TCHAR* argv[])
{
TestClass t(5);
std::cout << TestClass::ID << std::endl;
std::cout << t._value << std::endl;

return 0;
}

 

这样,你就成功的实现,一次定义,生成多段代码了。。。

此外,当接收到消息后,你还需要处理消息。接收消息的函数,是IPC::Channel::Listener子类的OnMessageReceived函数。在这个函数中,会放置一坨的宏,这一套宏,一定能让你想起MFC的Message Map机制:

 

    IPC_BEGIN_MESSAGE_MAP_EX(RenderProcessHost, msg, msg_is_ok)

      IPC_MESSAGE_HANDLER(ViewHostMsg_PageContents, OnPageContents)
      IPC_MESSAGE_HANDLER(ViewHostMsg_UpdatedCacheStats,
                          OnUpdatedCacheStats)
      IPC_MESSAGE_UNHANDLED_ERROR()
    IPC_END_MESSAGE_MAP_EX()

 

这个东西很简单,展开后基本可以视为一个Switch循环,判断消息ID,然后将消息,传递给对应的函数。与MFC的Message Map比起来,做的事情少多了。。。

通过宏的手段,可以解决消息类声明和消息的分发问题,但是自动的序列化还不能支持(所谓自动的序列化,就是不论你是什么类型的参数,几个参数,都可以直接序列化,不需要另写代码...)。在C++这种语言中,所谓自动的序列化,自动的类型识别,自动的XXX,往往都是通过模板来实现的。这些所谓的自动化,其实就是通过事前的大量人肉劳作,和模板自动递推来实现的,如果说.Net或Java中的自动序列化是过山轨道,这就是那挑夫的骄子,虽然最后都是两腿不动到了山顶,这底下费得力气真是天壤之别啊。具体实现技巧,有兴趣的看看《STL源码剖析》,或者是《C++新思维》,或者Chrome中的ipc_message_utils.h,这要说清楚实在不是一两句的事情。。。

总之通过宏和模板,你可以很简单的声明一个消息,这个消息可以传入各式各样的参数(这里用到了夸张的修辞手法,其实,只要是模板实现的自动化,永远都是有限制的,在Chrome的模板实现中,参数数量不要超过5个,类型需要是基本类型、STL容器等,在不BT的场合,应该够用了...),你可以调用Channel、ChannelProxy、SyncChannel之类的Send方法,将消息发送给其他进程,并且,实现一个Listener类,用Message Map来分发消息给对应的处理函数。如此,整个IPC体系搭建完成。。。

苦力的宏和模板

不论是宏还是模板,为了实现这套机制,都需要写大量的类似代码,比如为了支持0~N个参数的Control消息,你就需要写N+1个类似的宏;为了支持各种基础数据结构的序列化,你就需要写上十来个类似的Write函数和Traits。。。

之所以做如此苦力的活,都是为了用这些东西的人能够尽可能的简单方便,符合DIY原则。规约到之前说的设计者的职责上来,这是一个典型的苦了我一个幸福千万人的负责任的行为。在Chrome中,如此的代码随处可见,光Tuple那一套拳法,我现在就看到了使了不下三次(我曾经做过一套,直接吐血...),如此兢兢业业,真是可歌可泣啊。。。

原创粉丝点击