POJ 2480 Longge's problem 欧拉函数

来源:互联网 发布:淘宝女童冬装外套新款 编辑:程序博客网 时间:2024/05/16 12:39
题意: Given an integer N(1 < N < 2^31),you are to calculate ∑gcd(i, N) 1<=i <=N.

题解:

公式:f(N)=∑x*φ(N/x),x | N (x是N的约数)
因为在1···N中,gcd(i,N) = x, 的个数的等于φ(N / x)

另外还可以利用函数的积性:

对于正整数n的一个函数 f(n),当中f(1)=1且当a,b互质,f(ab)=f(a)f(b),在数论上就称它为积性函数。若某函数f(n)符合f(1)=1,且就算a,b不互质,f(ab)=f(a)f(b),则称它为完全积性函数。


不妨令M, N互素
f(M) = ∑d1 * φ(M / d1), d1 | M
f(N) = ∑d2 * φ(N / d2), d2 | N

f(MN) = ∑d * φ(MN / d), d | MN
因为M, N互素,则每个d都可以唯一分解为M中的因子d1, 和N中的因子d2
即d = d1 * d2, d1 | M, d2 | N, d1与d2互素
则d * φ(MN / d) = d1 * d2 * φ(M / d1) * φ(N / d2)
f(MN)中的项与f(M) * f(N)中的项一一对应

解法一:47MS
#include<cstdio>#include<cstring>using namespace std;#define MAXN 200000#define lint __int64struct Factor { lint b, e; };Factor f[MAXN]; lint fnum;lint a[MAXN], p[MAXN], pn;lint n, ret;void Prime(){    lint i, j; pn = 0;    memset(a,0,sizeof(a));    for ( i = 2; i < MAXN; i++ )    {        if ( a[i] == 0 ) p[pn++] = i;        for ( j = 0; j < pn && i*p[j] < MAXN && (p[j]<=a[i] || !a[i]); j++ )            a[i*p[j]] = p[j];    }}lint Euler ( lint n ){    lint ret = n;    for ( int i = 0; p[i] * p[i] <= n; i++ )    {        if ( n % p[i] == 0 )        {            ret = ret - ret / p[i];            while ( n % p[i] == 0 ) n /= p[i];        }    }    if ( n > 1 )        ret = ret - ret / n;    return ret;}void split ( lint n ){    fnum = 0;    for ( int i = 0; p[i] * p[i] <= n; i++ )    {        if ( n % p[i] ) continue;        f[fnum].b = p[i]; f[fnum].e = 0;        while ( n % p[i] == 0 )        {            f[fnum].e++;            n /= p[i];        }        fnum++;    }    if ( n > 1 )        f[fnum].b = n, f[fnum++].e = 1;}void DFS ( lint val, int index ) //求n的每一个约数,然后利用欧拉函数{    if ( index == fnum )    {        ret += Euler(n/val) * val;   //Euler(n/val)的值表示1-n中gcd(n,i)= val的个数        return;    }    for ( lint i = 0, tmp = 1; i <= f[index].e; i++, tmp *= f[index].b )        DFS ( val*tmp, index+1 );}int main(){    Prime();    while ( scanf("%I64d",&n) != EOF )    {        split ( n );        ret = 0;        DFS ( 1, 0 );        printf("%I64d\n",ret);    }}


解法二:利用积性16ms
#include<cstdio>#include<cstring>using namespace std;#define MAXN 200000#define lint __int64struct Factor { lint b, e, mult; };Factor f[MAXN]; lint fnum;lint a[MAXN], p[MAXN], pn;void Prime(){    lint i, j; pn = 0;    memset(a,0,sizeof(a));    for ( i = 2; i < MAXN; i++ )    {        if ( a[i] == 0 ) p[pn++] = i;        for ( j = 0; j < pn && i*p[j] < MAXN && (p[j]<=a[i] || !a[i]); j++ )            a[i*p[j]] = p[j];    }}lint Euler ( lint n ){    lint ret = n;    for ( int i = 0; p[i] * p[i] <= n; i++ )    {        if ( n % p[i] == 0 )        {            ret = ret - ret / p[i];            while ( n % p[i] == 0 ) n /= p[i];        }    }    if ( n > 1 )        ret = ret - ret / n;    return ret;}void split ( lint n ){    fnum = 0;    for ( int i = 0; p[i] * p[i] <= n; i++ )    {        if ( n % p[i] ) continue;        f[fnum].b = p[i]; f[fnum].e = 0;        f[fnum].mult = 1;        while ( n % p[i] == 0 )        {            f[fnum].e++;            f[fnum].mult *= p[i];            n /= p[i];        }        fnum++;    }    if ( n > 1 )        f[fnum].b = f[fnum].mult = n, f[fnum++].e = 1;}int main(){    Prime(); lint n;    while ( scanf("%I64d",&n) != EOF )    {        split ( n );        lint ret = 1, tmp, sum;        for ( int i = 0; i < fnum; i++ )        {            tmp = 1, sum = Euler(f[i].mult); //所有与f[i].mult互素的数先加起来            for ( int j = 1; j <= f[i].e; j++ )            {                tmp *= f[i].b;                sum += Euler(f[i].mult/tmp) * tmp;            }            ret *= sum;        }        printf("%I64d\n",ret);    }}