动态规划学习笔记

来源:互联网 发布:淘宝热卖怎么加入 编辑:程序博客网 时间:2024/05/22 17:19
动态规划算法导论中给出的解释如下:

动态规划通常应用于最优化问题。此类问题可能有很多种可行解。每个解都有一个值,而我们希望找出一个具有最优(最大或最小)值的解。称这样的解为该问题的“一个”最优解(而不是“确定的”最优解),因为可能存在多个最优值得解。

动态规划的设计可以分为如下四个步骤

①描述最优解的结构。

②递归定义最优解的值。

③按自底向上的方式计算最优解的值。

④由计算出的结构构造一个最优解。

基本思想与策略

    基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息。在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。依次解决各子问题,最后一个子问题就是初始问题的解。

    由于动态规划解决的问题多数有重叠子问题这个特点,为减少重复计算,对每一个子问题只解一次,将其不同阶段的不同状态保存在一个二维数组中。

    与分治法最大的差别是:适合于用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的(即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解)。

 适用的情况

能采用动态规划求解的问题的一般要具有3个性质:

(1) 最优化原理:如果问题的最优解所包含的子问题的解也是最优的,就称该问题具有最优子结构,即满足最优化原理。

(2)无后效性:即某阶段状态一旦确定,就不受这个状态以后决策的影响。也就是说,某状态以后的过程不会影响以前的状态,只与当前状态有关。

(3)有重叠子问题:即子问题之间是不独立的,一个子问题在下一阶段决策中可能被多次使用到。

算法实现的说明

动态规划的主要难点在于理论上的设计,也就是上面4个步骤的确定,一旦设计完成,实现部分就会非常简单。

使用动态规划求解问题,最重要的就是确定动态规划三要素

(1)问题的阶段

(2)每个阶段的状态

(3)从前一个阶段转化到后一个阶段之间的递推关系。

  递推关系必须是从次小的问题开始到较大的问题之间的转化,从这个角度来说,动态规划往往可以用递归程序来实现,不过因为递推可以充分利用前面保存的子问题的解来减少重复计算,所以对于大规模问题来说,有递归不可比拟的优势,这也是动态规划算法的核心之处。

    确定了动态规划的这三要素,整个求解过程就可以用一个最优决策表来描述,最优决策表是一个二维表,其中行表示决策的阶段,列表示问题状态,表格需要填写的数据一般对应此问题的在某个阶段某个状态下的最优值(如最短路径,最长公共子序列,最大价值等),填表的过程就是根据递推关系,从1行1列开始,以行或者列优先的顺序,依次填写表格,最后根据整个表格的数据通过简单的取舍或者运算求得问题的最优解。

f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}

实例:

一、01背包问题(转自:http://blog.csdn.net/mu399/article/details/7722810)

01背包的状态转换方程 f[i,j] = Max{ f[i-1,j-Wi]+Pi( j >= Wi ),  f[i-1,j] }

f[i,j]表示在前i件物品中选择若干件放在承重为 j 的背包中,可以取得的最大价值。
Pi表示第i件物品的价值。
决策:为了背包中物品总价值最大化,第 i件物品应该放入背包中吗 ?
有编号分别为a,b,c,d,e的五件物品,它们的重量分别是2,2,6,5,4,它们的价值分别是6,3,5,4,6,现在给你个承重为10的背包,如何让背包里装入的物品具有最大的价值总和?

nameweightvalue12345678910a26066991212151515b23033669991011c65000666661011d54000666661010e460006666666

只要你能通过找规律手工填写出上面这张表就算理解了01背包的动态规划算法。

首先要明确这张表是至底向上,从左到右生成的。

为了叙述方便,用e2单元格表示e行2列的单元格,这个单元格的意义是用来表示只有物品e时,有个承重为2的背包,那么这个背包的最大价值是0,因为e物品的重量是4,背包装不了。

对于d2单元格,表示只有物品e,d时,承重为2的背包,所能装入的最大价值,仍然是0,因为物品e,d都不是这个背包能装的。

同理,c2=0,b2=3,a2=6。

对于承重为8的背包,a8=15,是怎么得出的呢?

根据01背包的状态转换方程,需要考察两个值,

一个是f[i-1,j],对于这个例子来说就是b8的值9,另一个是f[i-1,j-Wi]+Pi;

在这里,

f[i-1,j]表示我有一个承重为8的背包,当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值

f[i-1,j-Wi]表示我有一个承重为6的背包(等于当前背包承重减去物品a的重量),当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值

f[i-1,j-Wi]就是指单元格b6,值为9,Pi指的是a物品的价值,即6

由于f[i-1,j-Wi]+Pi = 9 + 6 = 15 大于f[i-1,j] = 9,所以物品a应该放入承重为8的背包

代码如下:

public class PackageItem {    public static int getPackageAnswer(int[] bagItems,int[] values, int count,int bagSize){    if(count < 0||bagSize<=0){    return 0;    }    if(bagSize-bagItems[count] > 0){    return  max(values[count]+getPackageAnswer(bagItems, values,count-1, bagSize-bagItems[count]),     getPackageAnswer(bagItems, values,count-1, bagSize));    }    else{        return getPackageAnswer(bagItems, values,count-1, bagSize);    }    }    public static int max(int a,int b){    return a > b?a:b;    }public static void main(String[] args) {// TODO Auto-generated method stubint[] bags={2,2,6,5,4};int[] values = {6,3,5,4,6};System.out.println(getPackageAnswer(bags, values, 4, 10));}}


二、最大公共子序列

问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列。令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X的子序列,存在X的一个严格递增下标序列<i0,i1,…,ik-1>,使得对所有的j=0,1,…,k-1,有xij=yj。例如,X=“ABCBDAB”,Y=“BCDB”是X的一个子序列。

考虑最长公共子序列问题如何分解成子问题,设A=“a0,a1,…,am-1”,B=“b0,b1,…,bm-1”,并Z=“z0,z1,…,zk-1”为它们的最长公共子序列。不难证明有以下性质:

(1) 如果am-1=bn-1,则zk-1=am-1=bn-1,且“z0,z1,…,zk-2”是“a0,a1,…,am-2”和“b0,b1,…,bn-2”的一个最长公共子序列;

(2) 如果am-1!=bn-1,则若zk-1!=am-1,蕴涵“z0,z1,…,zk-1”是“a0,a1,…,am-2”和“b0,b1,…,bn-1”的一个最长公共子序列;

(3) 如果am-1!=bn-1,则若zk-1!=bn-1,蕴涵“z0,z1,…,zk-1”是“a0,a1,…,am-1”和“b0,b1,…,bn-2”的一个最长公共子序列。

这样,在找A和B的公共子序列时,如有am-1=bn-1,则进一步解决一个子问题,找“a0,a1,…,am-2”和“b0,b1,…,bm-2”的一个最长公共子序列;如果am-1!=bn-1,则要解决两个子问题,找出“a0,a1,…,am-2”和“b0,b1,…,bn-1”的一个最长公共子序列和找出“a0,a1,…,am-1”和“b0,b1,…,bn-2”的一个最长公共子序列,再取两者中较长者作为A和B的最长公共子序列。

 求解:

引进一个二维数组c[][],用c[i][j]记录X[i]与Y[j] 的LCS 的长度,b[i][j]记录c[i][j]是通过哪一个子问题的值求得的,以决定搜索的方向。
我们是自底向上进行递推计算,那么在计算c[i,j]之前,c[i-1][j-1],c[i-1][j]与c[i][j-1]均已计算出来。此时我们根据X[i] = Y[j]还是X[i] != Y[j],就可以计算出c[i][j]。

问题的递归式写成:


recursive formula



0 0
原创粉丝点击