克罗内克积

来源:互联网 发布:w7计算机mac地址怎么查 编辑:程序博客网 时间:2024/06/05 06:27

定义[编辑]

如果A是一个 m × n 的矩阵,而B是一个 p × q 的矩阵,克罗内克积A \otimes B则是一个 mp × nq 的分块矩阵

 A \otimes B = \begin{bmatrix} a_{11} B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1} B & \cdots & a_{mn} B \end{bmatrix}.

更具体地可表示为

 A \otimes B = \begin{bmatrix}   a_{11} b_{11} & a_{11} b_{12} & \cdots & a_{11} b_{1q} &                    \cdots & \cdots & a_{1n} b_{11} & a_{1n} b_{12} & \cdots & a_{1n} b_{1q} \\   a_{11} b_{21} & a_{11} b_{22} & \cdots & a_{11} b_{2q} &                    \cdots & \cdots & a_{1n} b_{21} & a_{1n} b_{22} & \cdots & a_{1n} b_{2q} \\   \vdots & \vdots & \ddots & \vdots & & & \vdots & \vdots & \ddots & \vdots \\   a_{11} b_{p1} & a_{11} b_{p2} & \cdots & a_{11} b_{pq} &                    \cdots & \cdots & a_{1n} b_{p1} & a_{1n} b_{p2} & \cdots & a_{1n} b_{pq} \\   \vdots & \vdots & & \vdots & \ddots & & \vdots & \vdots & & \vdots \\   \vdots & \vdots & & \vdots & & \ddots & \vdots & \vdots & & \vdots \\   a_{m1} b_{11} & a_{m1} b_{12} & \cdots & a_{m1} b_{1q} &                    \cdots & \cdots & a_{mn} b_{11} & a_{mn} b_{12} & \cdots & a_{mn} b_{1q} \\   a_{m1} b_{21} & a_{m1} b_{22} & \cdots & a_{m1} b_{2q} &                    \cdots & \cdots & a_{mn} b_{21} & a_{mn} b_{22} & \cdots & a_{mn} b_{2q} \\   \vdots & \vdots & \ddots & \vdots & & & \vdots & \vdots & \ddots & \vdots \\   a_{m1} b_{p1} & a_{m1} b_{p2} & \cdots & a_{m1} b_{pq} &                    \cdots & \cdots & a_{mn} b_{p1} & a_{mn} b_{p2} & \cdots & a_{mn} b_{pq} \end{bmatrix}.

例子[编辑]

  \begin{bmatrix}     1 & 2 \\     3 & 1 \\   \end{bmatrix}\otimes  \begin{bmatrix}     0 & 3 \\     2 & 1 \\   \end{bmatrix}=  \begin{bmatrix}     1\cdot 0 & 1\cdot 3 & 2\cdot 0 & 2\cdot 3 \\     1\cdot 2 & 1\cdot 1 & 2\cdot 2 & 2\cdot 1 \\     3\cdot 0 & 3\cdot 3 & 1\cdot 0 & 1\cdot 3 \\     3\cdot 2 & 3\cdot 1 & 1\cdot 2 & 1\cdot 1 \\   \end{bmatrix}=  \begin{bmatrix}     0 & 3 & 0 & 6 \\     2 & 1 & 4 & 2 \\    0 & 9 & 0 & 3 \\    6 & 3 & 2 & 1  \end{bmatrix}.
\begin{bmatrix}a_{11} & a_{12} \\a_{21} & a_{22} \\a_{31} & a_{32}\end{bmatrix}\otimes\begin{bmatrix}b_{11} & b_{12} & b_{13} \\b_{21} & b_{22} & b_{23}\end{bmatrix}=\begin{bmatrix}a_{11} b_{11} & a_{11} b_{12} & a_{11} b_{13} & a_{12} b_{11} & a_{12} b_{12} & a_{12} b_{13} \\a_{11} b_{21} & a_{11} b_{22} & a_{11} b_{23} & a_{12} b_{21} & a_{12} b_{22} & a_{12} b_{23} \\a_{21} b_{11} & a_{21} b_{12} & a_{21} b_{13} & a_{22} b_{11} & a_{22} b_{12} & a_{22} b_{13} \\a_{21} b_{21} & a_{21} b_{22} & a_{21} b_{23} & a_{22} b_{21} & a_{22} b_{22} & a_{22} b_{23} \\a_{31} b_{11} & a_{31} b_{12} & a_{31} b_{13} & a_{32} b_{11} & a_{32} b_{12} & a_{32} b_{13} \\a_{31} b_{21} & a_{31} b_{22} & a_{31} b_{23} & a_{32} b_{21} & a_{32} b_{22} & a_{32} b_{23}\end{bmatrix}.
0 0
原创粉丝点击