最小生成树——Prim(普利姆)算法

来源:互联网 发布:mac创建电脑账户的提示 编辑:程序博客网 时间:2024/06/05 18:49

【0】README

0.1) 本文总结于 数据结构与算法分析, 源代码均为原创, 旨在 理解Prim算法的idea 并用 源代码加以实现;
0.2)最小生成树的基础知识,参见 http://blog.csdn.net/pacosonswjtu/article/details/49947085


【1】Prim算法相关

1.1)计算最小生成树的一种方法是使其连续地一步一步长成。在每一步, 都要吧一个节点当做根并往上加边,这样也就把相关联的顶点加到增长中的树上;
1.2)在算法中的任一时刻, 我们都可以看到一个已经添加到树上的顶点集, 而其余顶点尚未加到这颗树中。此时, 算法在每一阶段都可以通过选择边(u, v),使得(u, v)的值是所有u 在树上但v不在树上的边的值中的最小者, 而找出一个新的顶点并吧它添加到这颗树中;
1.3)具体步骤概括为:

  • step1)给定一个顶点为根节点;
  • step2)每一步加一条边和一个顶点; (这也迎合了 顶点个数-边个数=1 );

1.4)看个荔枝:

对上图的分析(Analysis):
A1)可以看到, 其实Prim算法基本上和求最短路径的 Dijkstra算法一样, 因此和前面一样,我们对每一个顶点保留值 Dv和Pv 以及一个指标,指示该顶点是已知的还是未知的。这里,Dv是连接v 到已知顶点的最短边的权, 而 Pv则是导致Dv改变的最后的顶点。
A2)算法的其余部分一样, 唯一不同的是: 由于Dv的定义不同, 因此它的更新法则不一样。事实上,Prim算法的更新法则比 Dijkstra算法简单:在每一个顶点v被选取后, 对于每一个与 v 邻接的未知的w, Dw=min(Dw, Cw,v);
这里写图片描述
对上图的分析(Analysis):
A1)该算法整个的实现实际上和 Dijkstra算法的实现是一样的, 对于 Dijkstra算法分析所做的每一件事都可以用到这里。 不过要注意, Prim算法是在无向图上运行的, 因此当编写代码的时候要记住要吧每一条变都要放到两个邻接表中。
A2)不用堆时的运行时间为O(|V|^2), 它对于稠密图来说是最优的; 使用二叉堆的运行时间为 O(|E|log|V|), 它对于稀疏图是一个好的界限;


【2】source code + printing results(将我的代码打印结果 同 上图中的手动模拟的prim算法的结果进行比较,你会发现, 它们的结果完全相同,这也证实了我的代码的可行性)

2.1)download source code: https://github.com/pacosonTang/dataStructure-algorithmAnalysis/tree/master/chapter9/p237_prim
2.2)source code at a glance(for complete code , please click the given link above):

#include "prim.h"//allocate the memory for initializing unweighted tableWeightedTable *initWeightedTable(int size){       WeightedTable* table;    int i;    table = (WeightedTable*)malloc(sizeof(WeightedTable) * size);    if(!table)    {        Error("out of space ,from func initWeightedTable");        return NULL;    }    for(i = 0; i < size; i++)    {        table[i] = makeEmptyWeightedTable();                if(!table[i])            return NULL;    }    return table;} // allocate the memory for every element in unweighted table  WeightedTable makeEmptyWeightedTable(){    WeightedTable element;    element = (WeightedTable)malloc(sizeof(struct WeightedTable));    if(!element)    {        Error("out of space ,from func makeEmptyWeightedTable");        return NULL;    }       element->known = 0; // 1 refers to accessed , also 0 refers to not accessed    element->distance = MaxInt;    element->path = -1; // index starts from 0 and -1 means the startup vertex unreaches other vertexs    return element;}// allocate the memory for storing index of  vertex in heap and let every element -1int *makeEmptyArray(int size){    int *array;    int i;    array = (int*)malloc(size * sizeof(int));    if(!array)    {        Error("out of space ,from func makeEmptyArray");        return NULL;    }           for(i=0; i<size; i++)        array[i] = -1;    return array;}//computing the unweighted shortest path between the vertex under initIndex and other vertexsvoid prim(AdjTable* adj, int size, int startVertex, BinaryHeap bh){           int adjVertex;      int tempDistance;    WeightedTable* table;    int vertex;         AdjTable temp;      Distance tempDisStruct;    int *indexOfVertexInHeap;    int indexOfHeap;    table = initWeightedTable(size);            tempDisStruct = makeEmptyDistance();    indexOfVertexInHeap = makeEmptyArray(size);    tempDisStruct->distance = table[startVertex-1]->distance;    tempDisStruct->vertexIndex = startVertex-1;    insert(tempDisStruct, bh, indexOfVertexInHeap); // insert the (startVertex-1) into the binary heap      table[startVertex-1]->distance = 0;// update the distance     table[startVertex-1]->path = 0;// update the path of starting vertex    while(!isEmpty(bh))    {               vertex = deleteMin(bh, indexOfVertexInHeap).vertexIndex; // return the minimal element in binary heap        //printBinaryHeap(bh);        table[vertex]->known = 1; // update the vertex as accessed, also let responding known be 1        temp = adj[vertex]->next;        while(temp)        {            adjVertex = temp->index;             if(table[adjVertex]->known == 1) // judge whether table[adjVertex]->known is 1 or not            {                temp = temp->next;                continue;            }            //tempDistance = table[vertex]->distance + temp->weight; // update the distance            tempDistance = temp->weight;            if(tempDistance < table[adjVertex]->distance)            {                table[adjVertex]->distance = tempDistance;                table[adjVertex]->path = vertex; //update the path of adjVertex, also responding path evaluated as vertex                                           // key, we should judge whether adjVertex was added into the binary heap                                //if true , obviously the element has been added into the binary heap(so we can't add the element into heap once again)                if(indexOfVertexInHeap[adjVertex] != -1)                 {                    indexOfHeap = indexOfVertexInHeap[adjVertex];                    bh->elements[indexOfHeap]->distance = tempDistance; // update the distance of corresponding vertex in binary heap                }                else // if not ture                {                    tempDisStruct->distance = table[adjVertex]->distance;                    tempDisStruct->vertexIndex = adjVertex;                    insert(tempDisStruct, bh, indexOfVertexInHeap); // insert the adjVertex into the binary heap                }            }                        temp = temp->next;              }               printPrim(table, size, startVertex);                printBinaryHeap(bh);        printf("\n");    }           printf("\n");} //print unweighted tablevoid printPrim(WeightedTable* table, int size, int startVertex){    int i;      char *str[4] =     {        "vertex",        "known",        "distance",        "path"    };    printf("\n\t === storage table related to Prim alg as follows: === ");      printf("\n\t %6s%6s%9s%5s", str[0], str[1], str[2], str[3]);        for(i=0; i<size; i++)    {               if(i != startVertex-1 && table[i]->path!=-1)             printf("\n\t %-3d   %3d   %5d      v%-3d  ", i+1, table[i]->known, table[i]->distance, table[i]->path+1);        else if(table[i]->path == -1)            printf("\n\t %-3d   %3d   %5d      %-3d  ", i+1, table[i]->known, table[i]->distance, table[i]->path);        else            printf("\n\t *%-3d  %3d   %5d      %-3d  ", i+1, table[i]->known, table[i]->distance, 0);    }    }int main(){     AdjTable* adj;      BinaryHeap bh;    int size = 7;    int capacity;    int i;    int j;      int startVertex;    int adjTable[7][7] =     {        {0, 2, 4, 1, 0, 0, 0},        {2, 0, 0, 3, 10, 0, 0},        {4, 0, 0, 2, 0, 5, 0},        {1, 3, 2, 0, 7, 8, 4},        {0, 10, 0, 7, 0, 0, 6},        {0, 0, 5, 8, 0, 0, 1},        {0, 0, 0, 4, 6, 1, 0},    };    printf("\n\n\t ====== test for Prim alg finding weighted shortest path from adjoining table ======\n");    adj = initAdjTable(size);           printf("\n\n\t ====== the initial weighted adjoining table is as follows:======\n");    for(i = 0; i < size; i++)        for(j = 0; j < size; j++)               if(adjTable[i][j])                          insertAdj(adj, j, i, adjTable[i][j]); // insertAdj the adjoining table over    printAdjTable(adj, size);       capacity = 7;    bh = initBinaryHeap(capacity+1);    //conducting prim alg to find minimum spanning tree(MST)    startVertex = 1; // you should know our index for storing vertex starts from 0    prim(adj, size, startVertex, bh);       return 0;} 

2.3)printing results:

这里写图片描述
这里写图片描述
这里写图片描述

0 0
原创粉丝点击