数据结构笔记-----图

来源:互联网 发布:微信点赞用什么软件好 编辑:程序博客网 时间:2024/05/25 16:38

图的定义




都是图,可以用来描述生活里的各种情况

社交网络应用







小结




图的存储结构

邻接矩阵法







代码:


<strong><span style="font-size:18px;">#ifndef _MGRAPH_H_#define _MGRAPH_H_typedef void MGraph;typedef void MVertex;typedef void (MGraph_Printf)(MVertex*);MGraph* MGraph_Create(MVertex** v, int n);void MGraph_Destroy(MGraph* graph);void MGraph_Clear(MGraph* graph);int MGraph_AddEdge(MGraph* graph, int v1, int v2, int w);int MGraph_RemoveEdge(MGraph* graph, int v1, int v2);int MGraph_GetEdge(MGraph* graph, int v1, int v2);int MGraph_TD(MGraph* graph, int v);int MGraph_VertexCount(MGraph* graph);int MGraph_EdgeCount(MGraph* graph);void MGraph_DFS(MGraph* graph, int v, MGraph_Printf* pFunc);void MGraph_BFS(MGraph* graph, int v, MGraph_Printf* pFunc);void MGraph_Display(MGraph* graph, MGraph_Printf* pFunc);#endif</span></strong>


<strong><span style="font-size:18px;">#include <malloc.h>#include <stdio.h>#include "MGraph.h"#include "LinkQueue.h"typedef struct _tag_MGraph{    int count;    MVertex** v;    int** matrix;} TMGraph;static void recursive_dfs(TMGraph* graph, int v, int visited[], MGraph_Printf* pFunc){    int i = 0;        pFunc(graph->v[v]);        visited[v] = 1;        printf(", ");        for(i=0; i<graph->count; i++)    {        if( (graph->matrix[v][i] != 0) && !visited[i] )        {            recursive_dfs(graph, i, visited, pFunc);        }    }}static void bfs(TMGraph* graph, int v, int visited[], MGraph_Printf* pFunc){    LinkQueue* queue = LinkQueue_Create();        if( queue != NULL )    {        LinkQueue_Append(queue, graph->v + v);           //不可以在队列中加入值为0的元素        visited[v] = 1;                while( LinkQueue_Length(queue) > 0 )        {            int i = 0;                        v = (MVertex**)LinkQueue_Retrieve(queue) - graph->v;                        pFunc(graph->v[v]);                        printf(", ");                        for(i=0; i<graph->count; i++)            {                if( (graph->matrix[v][i] != 0) && !visited[i] )                {                    LinkQueue_Append(queue, graph->v + i);                                        visited[i] = 1;                }            }        }    }        LinkQueue_Destroy(queue);}MGraph* MGraph_Create(MVertex** v, int n)  // O(n){    TMGraph* ret = NULL;        if( (v != NULL ) && (n > 0) )    {        ret = (TMGraph*)malloc(sizeof(TMGraph));                if( ret != NULL )        {            int* p = NULL;                        ret->count = n;                        ret->v = (MVertex**)malloc(sizeof(MVertex*) * n);            //结点             ret->matrix = (int**)malloc(sizeof(int*) * n);            //通过二级指针动态申请一维指针数组             p = (int*)calloc(n * n, sizeof(int));            //通过一级指针申请数据空间             if( (ret->v != NULL) && (ret->matrix != NULL) && (p != NULL) )            {                int i = 0;                                for(i=0; i<n; i++)                {                    ret->v[i] = v[i];                    ret->matrix[i] = p + i * n;                    //将一维指针数组中的指针连接到数据空间                 }            }            else            {//异常处理                 free(p);                free(ret->matrix);                free(ret->v);                free(ret);                                ret = NULL;            }        }    }        return ret;}void MGraph_Destroy(MGraph* graph) // O(1){    TMGraph* tGraph = (TMGraph*)graph;        if( tGraph != NULL )    {        free(tGraph->v);        free(tGraph->matrix[0]);        //释放首地址         free(tGraph->matrix);        //释放一维数组         free(tGraph);        //这几步不能乱     }}void MGraph_Clear(MGraph* graph) // O(n*n){    TMGraph* tGraph = (TMGraph*)graph;        if( tGraph != NULL )    {        int i = 0;        int j = 0;                for(i=0; i<tGraph->count; i++)        {            for(j=0; j<tGraph->count; j++)            {                tGraph->matrix[i][j] = 0;            }        }    }}int MGraph_AddEdge(MGraph* graph, int v1, int v2, int w) // O(1){    TMGraph* tGraph = (TMGraph*)graph;    int ret = (tGraph != NULL);        ret = ret && (0 <= v1) && (v1 < tGraph->count);    ret = ret && (0 <= v2) && (v2 < tGraph->count);    ret = ret && (0 <= w);        if( ret )    {        tGraph->matrix[v1][v2] = w;    }        return ret;}int MGraph_RemoveEdge(MGraph* graph, int v1, int v2) // O(1){    int ret = MGraph_GetEdge(graph, v1, v2);        if( ret != 0 )    {        ((TMGraph*)graph)->matrix[v1][v2] = 0;    }        return ret;}int MGraph_GetEdge(MGraph* graph, int v1, int v2) // O(1){    TMGraph* tGraph = (TMGraph*)graph;    int condition = (tGraph != NULL);    int ret = 0;        condition = condition && (0 <= v1) && (v1 < tGraph->count);    condition = condition && (0 <= v2) && (v2 < tGraph->count);        if( condition )    {        ret = tGraph->matrix[v1][v2];    }        return ret;}int MGraph_TD(MGraph* graph, int v) // O(n) 度 {    TMGraph* tGraph = (TMGraph*)graph;    int condition = (tGraph != NULL);    int ret = 0;        condition = condition && (0 <= v) && (v < tGraph->count);        if( condition )    {        int i = 0;                for(i=0; i<tGraph->count; i++)        {            if( tGraph->matrix[v][i] != 0 )            {                ret++;            }                        if( tGraph->matrix[i][v] != 0 )            {                ret++;            }        }    }        return ret;}int MGraph_VertexCount(MGraph* graph) // O(1){    TMGraph* tGraph = (TMGraph*)graph;    int ret = 0;        if( tGraph != NULL )    {        ret = tGraph->count;    }        return ret;}int MGraph_EdgeCount(MGraph* graph) // O(n*n){    TMGraph* tGraph = (TMGraph*)graph;    int ret = 0;        if( tGraph != NULL )    {        int i = 0;        int j = 0;                for(i=0; i<tGraph->count; i++)        {            for(j=0; j<tGraph->count; j++)            {                if( tGraph->matrix[i][j] != 0 )                {                    ret++;                }            }        }    }        return ret;}void MGraph_DFS(MGraph* graph, int v, MGraph_Printf* pFunc){//深度优先遍历    TMGraph* tGraph = (TMGraph*)graph;    int* visited = NULL;    int condition = (tGraph != NULL);        condition = condition && (0 <= v) && (v < tGraph->count);    condition = condition && (pFunc != NULL);    condition = condition && ((visited = (int*)calloc(tGraph->count, sizeof(int))) != NULL);        if( condition )    {        int i = 0;                recursive_dfs(tGraph, v, visited, pFunc);                for(i=0; i<tGraph->count; i++)        {            if( !visited[i] )            {                recursive_dfs(tGraph, i, visited, pFunc);            }        }                printf("\n");    }        free(visited);}</span></strong>
<strong><span style="font-size:18px;">void MGraph_BFS(MGraph* graph, int v, MGraph_Printf* pFunc){//广度优先遍历     TMGraph* tGraph = (TMGraph*)graph;    int* visited = NULL;    int condition = (tGraph != NULL);        condition = condition && (0 <= v) && (v < tGraph->count);    condition = condition && (pFunc != NULL);    condition = condition && ((visited = (int*)calloc(tGraph->count, sizeof(int))) != NULL);        if( condition )    {        int i = 0;                bfs(tGraph, v, visited, pFunc);                for(i=0; i<tGraph->count; i++)        {            if( !visited[i] )            {                bfs(tGraph, i, visited, pFunc);            }        }                printf("\n");    }        free(visited);}void MGraph_Display(MGraph* graph, MGraph_Printf* pFunc) // O(n*n){         //MGraph_Display(graph, print_data);    TMGraph* tGraph = (TMGraph*)graph;        if( (tGraph != NULL) && (pFunc != NULL) )    {        int i = 0;        int j = 0;                for(i=0; i<tGraph->count; i++)        {            printf("%d:", i);            pFunc(tGraph->v[i]);            printf(" ");        }                printf("\n");                for(i=0; i<tGraph->count; i++)        {            for(j=0; j<tGraph->count; j++)            {                if( tGraph->matrix[i][j] != 0 )                {                    printf("<");                    pFunc(tGraph->v[i]);                    //print_data                    printf(", ");                    pFunc(tGraph->v[j]);                    printf(", %d", tGraph->matrix[i][j]);                    printf(">");                    printf(" ");                }            }        }                printf("\n");    }}</span></strong>


<strong><span style="font-size:18px;">#include <stdio.h>#include <stdlib.h>#include "MGraph.h"/* run this program using the console pauser or add your own getch, system("pause") or input loop */void print_data(MVertex* v){    printf("%s", (char*)v);}int main(int argc, char *argv[]){    MVertex* v[] = {"A", "B", "C", "D", "E", "F"};    MGraph* graph = MGraph_Create(v, 6);        MGraph_AddEdge(graph, 0, 1, 1);    MGraph_AddEdge(graph, 0, 2, 1);    MGraph_AddEdge(graph, 0, 3, 1);    MGraph_AddEdge(graph, 1, 5, 1);    MGraph_AddEdge(graph, 1, 4, 1);    MGraph_AddEdge(graph, 2, 1, 1);    MGraph_AddEdge(graph, 3, 4, 1);    MGraph_AddEdge(graph, 4, 2, 1);        MGraph_Display(graph, print_data);        MGraph_DFS(graph, 0, print_data);    MGraph_BFS(graph, 0, print_data);        MGraph_Destroy(graph);    return 0;}</span></strong>


图的遍历


深度优先遍历



广度优先遍历




代码

<strong><span style="font-size:18px;">#include <malloc.h>#include <stdio.h>#include "LGraph.h"#include "LinkList.h"#include "LinkQueue.h"typedef struct _tag_LGraph{    int count;    LVertex** v;    LinkList** la;} TLGraph;typedef struct _tag_ListNode{    LinkListNode header;    int v;    int w;} TListNode;static void recursive_dfs(TLGraph* graph, int v, int visited[], LGraph_Printf* pFunc){    int i = 0;        pFunc(graph->v[v]);        visited[v] = 1;        printf(", ");        for(i=0; i<LinkList_Length(graph->la[v]); i++)    {        TListNode* node = (TListNode*)LinkList_Get(graph->la[v], i);                if( !visited[node->v] )        {            recursive_dfs(graph, node->v, visited, pFunc);        }    }}static void bfs(TLGraph* graph, int v, int visited[], LGraph_Printf* pFunc){    LinkQueue* queue = LinkQueue_Create();        if( queue != NULL )    {        LinkQueue_Append(queue, graph->v + v);                visited[v] = 1;                while( LinkQueue_Length(queue) > 0 )        {            int i = 0;                        v = (LVertex**)LinkQueue_Retrieve(queue) - graph->v;                        pFunc(graph->v[v]);                        printf(", ");                        for(i=0; i<LinkList_Length(graph->la[v]); i++)            {                TListNode* node = (TListNode*)LinkList_Get(graph->la[v], i);                                if( !visited[node->v] )                {                    LinkQueue_Append(queue, graph->v + node->v);                                        visited[node->v] = 1;                }            }        }    }        LinkQueue_Destroy(queue);}LGraph* LGraph_Create(LVertex** v, int n)  // O(n){    TLGraph* ret = NULL;    int ok = 1;        if( (v != NULL ) && (n > 0) )    {        ret = (TLGraph*)malloc(sizeof(TLGraph));                if( ret != NULL )        {            ret->count = n;                        ret->v = (LVertex**)calloc(n, sizeof(LVertex*));                        ret->la = (LinkList**)calloc(n, sizeof(LinkList*));                        ok = (ret->v != NULL) && (ret->la != NULL);                        if( ok )            {                int i = 0;                                for(i=0; i<n; i++)                {                    ret->v[i] = v[i];                }                                for(i=0; (i<n) && ok; i++)                {                    ok = ok && ((ret->la[i] = LinkList_Create()) != NULL);                }            }                        if( !ok )            {                if( ret->la != NULL )                {                    int i = 0;                                        for(i=0; i<n; i++)                    {                        LinkList_Destroy(ret->la[i]);                    }                }                                free(ret->la);                free(ret->v);                free(ret);                                ret = NULL;            }        }    }        return ret;}void LGraph_Destroy(LGraph* graph) // O(n*n){    TLGraph* tGraph = (TLGraph*)graph;        LGraph_Clear(tGraph);        if( tGraph != NULL )    {        int i = 0;                for(i=0; i<tGraph->count; i++)        {            LinkList_Destroy(tGraph->la[i]);        }                free(tGraph->la);        free(tGraph->v);        free(tGraph);    }}void LGraph_Clear(LGraph* graph) // O(n*n){    TLGraph* tGraph = (TLGraph*)graph;        if( tGraph != NULL )    {        int i = 0;                for(i=0; i<tGraph->count; i++)        {            while( LinkList_Length(tGraph->la[i]) > 0 )            {                free(LinkList_Delete(tGraph->la[i], 0));            }        }    }}int LGraph_AddEdge(LGraph* graph, int v1, int v2, int w) // O(1){    TLGraph* tGraph = (TLGraph*)graph;    TListNode* node = NULL;    int ret = (tGraph != NULL);        ret = ret && (0 <= v1) && (v1 < tGraph->count);    ret = ret && (0 <= v2) && (v2 < tGraph->count);    ret = ret && (0 < w) && ((node = (TListNode*)malloc(sizeof(TListNode))) != NULL);        if( ret )    {       node->v = v2;       node->w = w;              LinkList_Insert(tGraph->la[v1], (LinkListNode*)node, 0);    }        return ret;}int LGraph_RemoveEdge(LGraph* graph, int v1, int v2) // O(n*n){    TLGraph* tGraph = (TLGraph*)graph;    int condition = (tGraph != NULL);    int ret = 0;        condition = condition && (0 <= v1) && (v1 < tGraph->count);    condition = condition && (0 <= v2) && (v2 < tGraph->count);        if( condition )    {        TListNode* node = NULL;        int i = 0;                for(i=0; i<LinkList_Length(tGraph->la[v1]); i++)        {            node = (TListNode*)LinkList_Get(tGraph->la[v1], i);                        if( node->v == v2)            {                ret = node->w;                                LinkList_Delete(tGraph->la[v1], i);                                free(node);                                break;            }        }    }        return ret;}int LGraph_GetEdge(LGraph* graph, int v1, int v2) // O(n*n){    TLGraph* tGraph = (TLGraph*)graph;    int condition = (tGraph != NULL);    int ret = 0;        condition = condition && (0 <= v1) && (v1 < tGraph->count);    condition = condition && (0 <= v2) && (v2 < tGraph->count);        if( condition )    {        TListNode* node = NULL;        int i = 0;                for(i=0; i<LinkList_Length(tGraph->la[v1]); i++)        {            node = (TListNode*)LinkList_Get(tGraph->la[v1], i);                        if( node->v == v2)            {                ret = node->w;                                break;            }        }    }        return ret;}int LGraph_TD(LGraph* graph, int v) // O(n*n*n){    TLGraph* tGraph = (TLGraph*)graph;    int condition = (tGraph != NULL);    int ret = 0;        condition = condition && (0 <= v) && (v < tGraph->count);        if( condition )    {        int i = 0;        int j = 0;                for(i=0; i<tGraph->count; i++)        {            for(j=0; j<LinkList_Length(tGraph->la[i]); j++)            {                TListNode* node = (TListNode*)LinkList_Get(tGraph->la[i], j);                                if( node->v == v )                {                    ret++;                }            }        }                ret += LinkList_Length(tGraph->la[v]);    }        return ret;}int LGraph_VertexCount(LGraph* graph) // O(1){    TLGraph* tGraph = (TLGraph*)graph;    int ret = 0;        if( tGraph != NULL )    {        ret = tGraph->count;    }        return ret;}int LGraph_EdgeCount(LGraph* graph) // O(n){    TLGraph* tGraph = (TLGraph*)graph;    int ret = 0;        if( tGraph != NULL )    {        int i = 0;                for(i=0; i<tGraph->count; i++)        {            ret += LinkList_Length(tGraph->la[i]);        }    }        return ret;}void LGraph_DFS(LGraph* graph, int v, LGraph_Printf* pFunc){    TLGraph* tGraph = (TLGraph*)graph;    int* visited = NULL;    int condition = (tGraph != NULL);        condition = condition && (0 <= v) && (v < tGraph->count);    condition = condition && (pFunc != NULL);    condition = condition && ((visited = (int*)calloc(tGraph->count, sizeof(int))) != NULL);        if( condition )    {        int i = 0;                recursive_dfs(tGraph, v, visited, pFunc);                for(i=0; i<tGraph->count; i++)        {            if( !visited[i] )            {                recursive_dfs(tGraph, i, visited, pFunc);            }        }                printf("\n");    }        free(visited);}void LGraph_BFS(LGraph* graph, int v, LGraph_Printf* pFunc){//借助队列实现     TLGraph* tGraph = (TLGraph*)graph;    int* visited = NULL;    int condition = (tGraph != NULL);        condition = condition && (0 <= v) && (v < tGraph->count);    condition = condition && (pFunc != NULL);    condition = condition && ((visited = (int*)calloc(tGraph->count, sizeof(int))) != NULL);        if( condition )    {        int i = 0;                bfs(tGraph, v, visited, pFunc);                for(i=0; i<tGraph->count; i++)        {            if( !visited[i] )            {                bfs(tGraph, i, visited, pFunc);            }        }                printf("\n");    }        free(visited);}void LGraph_Display(LGraph* graph, LGraph_Printf* pFunc) // O(n*n*n){    TLGraph* tGraph = (TLGraph*)graph;        if( (tGraph != NULL) && (pFunc != NULL) )    {        int i = 0;        int j = 0;                for(i=0; i<tGraph->count; i++)        {            printf("%d:", i);            pFunc(tGraph->v[i]);            printf(" ");        }                printf("\n");                for(i=0; i<tGraph->count; i++)        {            for(j=0; j<LinkList_Length(tGraph->la[i]); j++)            {                TListNode* node = (TListNode*)LinkList_Get(tGraph->la[i], j);                                printf("<");                pFunc(tGraph->v[i]);                printf(", ");                pFunc(tGraph->v[node->v]);                printf(", %d", node->w);                printf(">");                printf(" ");                           }        }                printf("\n");    }}</span></strong>

<strong><span style="font-size:18px;">#ifndef _LGRAPH_H_#define _LGRAPH_H_typedef void LGraph;typedef void LVertex;typedef void (LGraph_Printf)(LVertex*);LGraph* LGraph_Create(LVertex** v, int n);void LGraph_Destroy(LGraph* graph);void LGraph_Clear(LGraph* graph);int LGraph_AddEdge(LGraph* graph, int v1, int v2, int w);int LGraph_RemoveEdge(LGraph* graph, int v1, int v2);int LGraph_GetEdge(LGraph* graph, int v1, int v2);int LGraph_TD(LGraph* graph, int v);int LGraph_VertexCount(LGraph* graph);int LGraph_EdgeCount(LGraph* graph);void LGraph_DFS(LGraph* graph, int v, LGraph_Printf* pFunc);void LGraph_BFS(LGraph* graph, int v, LGraph_Printf* pFunc);void LGraph_Display(LGraph* graph, LGraph_Printf* pFunc);#endif</span></strong>

<strong><span style="font-size:18px;">#include <stdio.h>#include <stdlib.h>#include "LGraph.h"/* run this program using the console pauser or add your own getch, system("pause") or input loop */void print_data(LVertex* v){    printf("%s", (char*)v);}int main(int argc, char *argv[]){    LVertex* v[] = {"A", "B", "C", "D", "E", "F"};    LGraph* graph = LGraph_Create(v, 6);        LGraph_AddEdge(graph, 0, 1, 1);    LGraph_AddEdge(graph, 0, 2, 1);    LGraph_AddEdge(graph, 0, 3, 1);    LGraph_AddEdge(graph, 1, 5, 1);    LGraph_AddEdge(graph, 1, 4, 1);    LGraph_AddEdge(graph, 2, 1, 1);    LGraph_AddEdge(graph, 3, 4, 1);    LGraph_AddEdge(graph, 4, 2, 1);        LGraph_Display(graph, print_data);        LGraph_DFS(graph, 0, print_data);    LGraph_BFS(graph, 0, print_data);        LGraph_Destroy(graph);    return 0;}</span></strong>

邻接矩阵法实现在上面图的存储结构代码


小结

广度优先遍历与深度优先遍历是图结构的基础算法,也是其他图算法的基础。


思考:

借助栈数据结构


最小连通网

运营商的挑战


备选方案




Prim算法



代码


Prim.c

<strong><span style="font-size:18px;">#include <stdio.h>#include <stdlib.h>/* run this program using the console pauser or add your own getch, system("pause") or input loop */#define VNUM 9#define MV 65536int P[VNUM];//结点 int Cost[VNUM];//边的耗费 int Mark[VNUM];int Matrix[VNUM][VNUM] ={    {0, 10, MV, MV, MV, 11, MV, MV, MV},    {10, 0, 18, MV, MV, MV, 16, MV, 12},    {MV, 18, 0, 22, MV, MV, MV, MV, 8},    {MV, MV, 22, 0, 20, MV, MV, 16, 21},    {MV, MV, MV, 20, 0, 26, MV, 7, MV},    {11, MV, MV, MV, 26, 0, 17, MV, MV},    {MV, 16, MV, MV, MV, 17, 0, 19, MV},    {MV, MV, MV, 16, 7, MV, 19, 0, MV},    {MV, 12, 8, 21, MV, MV, MV, MV, 0},};void Prim(int sv) // O(n*n){    int i = 0;    int j = 0;        if( (0 <= sv) && (sv < VNUM) )    {        for(i=0; i<VNUM; i++)        {            Cost[i] = Matrix[sv][i];            P[i] = sv;            Mark[i] = 0;        }                Mark[sv] = 1;                for(i=0; i<VNUM; i++)        {            int min = MV;            int index = -1;                        for(j=0; j<VNUM; j++)            {                if( !Mark[j] && (Cost[j] < min) )                {                    min = Cost[j];                    index = j;                }            }                        if( index > -1 )            {                Mark[index] = 1;                                printf("(%d, %d, %d)\n", P[index], index, Cost[index]);            }                        for(j=0; j<VNUM; j++)            {//以index为结点查找最小权值                 if( !Mark[j] && (Matrix[index][j] < Cost[j]) )                {                    Cost[j]  = Matrix[index][j];                    P[j] = index;                }            }        }    }}int main(int argc, char *argv[]) {    Prim(0);    return 0;}</span></strong>


Kruskal算法






小结





最短路径



解决步骤描述



算法精髓




代码  类似Prim

Dijkstra.c


<strong><span style="font-size:18px;">#include <stdio.h>#include <stdlib.h>/* run this program using the console pauser or add your own getch, system("pause") or input loop */#define VNUM 5#define MV 65536int P[VNUM];int Dist[VNUM];int Mark[VNUM];int Matrix[VNUM][VNUM] ={    {0, 10, MV, 30, 100},    {MV, 0, 50, MV, MV},    {MV, MV, 0, MV, 10},    {MV, MV, 20, 0, 60},    {MV, MV, MV, MV, 0},};void Dijkstra(int sv) // O(n*n){    int i = 0;    int j = 0;        if( (0 <= sv) && (sv < VNUM) )    {        for(i=0; i<VNUM; i++)        {            Dist[i] = Matrix[sv][i];            P[i] = sv;            Mark[i] = 0;        }                Mark[sv] = 1;                for(i=0; i<VNUM; i++)        {            int min = MV;            int index = -1;                        for(j=0; j<VNUM; j++)            {                if( !Mark[j] && (Dist[j] < min) )                {                    min = Dist[j];                    index = j;                }            }                        if( index > -1 )            {                Mark[index] = 1;            }                        for(j=0; j<VNUM; j++)            {                if( !Mark[j] && (min + Matrix[index][j] < Dist[j]) )                {                    Dist[j] = min + Matrix[index][j];                    P[j] = index;                }            }        }                for(i=0; i<VNUM; i++)        {            int p = i;                        printf("%d -> %d: %d\n", sv, p, Dist[p]);                        do            {                printf("%d <- ", p);                p = P[p];            } while( p != sv );                        printf("%d\n", p);        }    }}int main(int argc, char *argv[]) {    Dijkstra(0);return 0;}</span></strong>




A矩阵的意义


代码

Floyd.c


#include <stdio.h>#include <stdlib.h>/* run this program using the console pauser or add your own getch, system("pause") or input loop */#define VNUM 5#define MV 65536int P[VNUM][VNUM];int A[VNUM][VNUM];int Matrix[VNUM][VNUM] ={    {0, 10, MV, 30, 100},    {MV, 0, 50, MV, MV},    {MV, MV, 0, MV, 10},    {MV, MV, 20, 0, 60},    {MV, MV, MV, MV, 0},};void Floyd() // O(n*n*n){    int i = 0;    int j = 0;    int k = 0;        for(i=0; i<VNUM; i++)    {        for(j=0; j<VNUM; j++)        {            A[i][j] = Matrix[i][j];            P[i][j] = j;            //保存正序的第二个顶点         }    }        for(i=0; i<VNUM; i++)    {        for(j=0; j<VNUM; j++)        {            for(k=0; k<VNUM; k++)            {                if( (A[j][i] + A[i][k]) < A[j][k] )                {                    A[j][k] = A[j][i] + A[i][k];                    P[j][k] = P[j][i];                 //通过中转                 }            }        }    }        for(i=0; i<VNUM; i++)    {        for(j=0; j<VNUM; j++)        {            int p = -1;                        printf("%d -> %d: %d\n", i, j, A[i][j]);                        printf("%d", i);                        p = i;                        do            {                p = P[p][j];                                printf(" -> %d", p);            } while( p != j);                        printf("\n");        }    }}int main(int argc, char *argv[]) {    Floyd();    return 0;}



小结




思考:



































0 0
原创粉丝点击