[转]最短路径算法—Dijkstra(迪杰斯特拉)算法分析与实现

来源:互联网 发布:telnet本机ip端口不通 编辑:程序博客网 时间:2024/06/06 04:13



最短路径算法—Dijkstra(迪杰斯特拉)算法分析与实现(C/C++)

Dijkstra算法

———————————
最后更新时间:2011.9.25
———————————
Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。

Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。

其基本思想是,设置顶点集合S并不断地作贪心选择来扩充这个集合。一个顶点属于集合S当且仅当从源到该顶点的最短路径长度已知。

初始时,S中仅含有源。设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度。Dijkstra算法每次从V-S中取出具有最短特殊路长度的顶点u,将u添加到S中,同时对数组dist作必要的修改。一旦S包含了所有V中顶点,dist就记录了从源到所有其它顶点之间的最短路径长度。

例如,对下图中的有向图,应用Dijkstra算法计算从源顶点1到其它顶点间最短路径的过程列在下表中。

Dijkstra算法的迭代过程:

主题好好理解上图!

以下是具体的实现(C/C++):

/**************************************** About:    有向图的Dijkstra算法实现* Author:   Tanky Woo* Blog:     www.WuTianQi.com***************************************/ #include <iostream>using namespace std; const int maxnum = 100;const int maxint = 999999; // 各数组都从下标1开始int dist[maxnum];     // 表示当前点到源点的最短路径长度int prev[maxnum];     // 记录当前点的前一个结点int c[maxnum][maxnum];   // 记录图的两点间路径长度int n, line;             // 图的结点数和路径数 // n -- n nodes// v -- the source node// dist[] -- the distance from the ith node to the source node// prev[] -- the previous node of the ith node// c[][] -- every two nodes' distancevoid Dijkstra(int n, int v, int *dist, int *prev, int c[maxnum][maxnum]){bool s[maxnum];    // 判断是否已存入该点到S集合中for(int i=1; i<=n; ++i){dist[i] = c[v][i];s[i] = 0;     // 初始都未用过该点if(dist[i] == maxint)prev[i] = 0;elseprev[i] = v;}dist[v] = 0;s[v] = 1; // 依次将未放入S集合的结点中,取dist[]最小值的结点,放入结合S中// 一旦S包含了所有V中顶点,dist就记录了从源点到所有其他顶点之间的最短路径长度         // 注意是从第二个节点开始,第一个为源点for(int i=2; i<=n; ++i){int tmp = maxint;int u = v;// 找出当前未使用的点j的dist[j]最小值for(int j=1; j<=n; ++j)if((!s[j]) && dist[j]<tmp){u = j;              // u保存当前邻接点中距离最小的点的号码tmp = dist[j];}s[u] = 1;    // 表示u点已存入S集合中 // 更新distfor(int j=1; j<=n; ++j)if((!s[j]) && c[u][j]<maxint){int newdist = dist[u] + c[u][j];if(newdist < dist[j]){dist[j] = newdist;prev[j] = u;}}}} // 查找从源点v到终点u的路径,并输出void searchPath(int *prev,int v, int u){int que[maxnum];int tot = 1;que[tot] = u;tot++;int tmp = prev[u];while(tmp != v){que[tot] = tmp;tot++;tmp = prev[tmp];}que[tot] = v;for(int i=tot; i>=1; --i)if(i != 1)cout << que[i] << " -> ";elsecout << que[i] << endl;} int main(){freopen("input.txt", "r", stdin);// 各数组都从下标1开始 // 输入结点数cin >> n;// 输入路径数cin >> line;int p, q, len;          // 输入p, q两点及其路径长度 // 初始化c[][]为maxintfor(int i=1; i<=n; ++i)for(int j=1; j<=n; ++j)c[i][j] = maxint; for(int i=1; i<=line; ++i)  {cin >> p >> q >> len;if(len < c[p][q])       // 有重边{c[p][q] = len;      // p指向qc[q][p] = len;      // q指向p,这样表示无向图}} for(int i=1; i<=n; ++i)dist[i] = maxint;for(int i=1; i<=n; ++i){for(int j=1; j<=n; ++j)printf("%8d", c[i][j]);printf("\n");} Dijkstra(n, 1, dist, prev, c); // 最短路径长度cout << "源点到最后一个顶点的最短路径长度: " << dist[n] << endl; // 路径cout << "源点到最后一个顶点的路径为: ";searchPath(prev, 1, n);}

输入数据:
5
7
1 2 10
1 4 30
1 5 100
2 3 50
3 5 10
4 3 20
4 5 60
输出数据:
999999 10 999999 30 100
10 999999 50 999999 999999
999999 50 999999 20 10
30 999999 20 999999 60
100 999999 10 60 999999
源点到最后一个顶点的最短路径长度: 60
源点到最后一个顶点的路径为: 1 -> 4 -> 3 -> 5

最后给出两道题目练手,都是直接套用模版就OK的:
1.HDOJ 1874 畅通工程续
http://www.wutianqi.com/?p=1894

2.HDOJ 2544 最短路
http://www.wutianqi.com/?p=1892

来源:http://www.wutianqi.com/?p=1890



Dijkstra算法(单源最短路径)



                               Dijkstra算法(单源最短路径)

      单源最短路径问题,即在图中求出给定顶点到其它任一顶点的最短路径。在弄清楚如何求算单源最短路径问题之前,必须弄清楚最短路径的最优子结构性质。

一.最短路径的最优子结构性质

   该性质描述为:如果P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,k和s是这条路径上的一个中间顶点,那么P(k,s)必定是从k到s的最短路径。下面证明该性质的正确性。

   假设P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,则有P(i,j)=P(i,k)+P(k,s)+P(s,j)。而P(k,s)不是从k到s的最短距离,那么必定存在另一条从k到s的最短路径P'(k,s),那么P'(i,j)=P(i,k)+P'(k,s)+P(s,j)<P(i,j)。则与P(i,j)是从i到j的最短路径相矛盾。因此该性质得证。

二.Dijkstra算法

   由上述性质可知,如果存在一条从i到j的最短路径(Vi.....Vk,Vj),Vk是Vj前面的一顶点。那么(Vi...Vk)也必定是从i到k的最短路径。为了求出最短路径,Dijkstra就提出了以最短路径长度递增,逐次生成最短路径的算法。譬如对于源顶点V0,首先选择其直接相邻的顶点中长度最短的顶点Vi,那么当前已知可得从V0到达Vj顶点的最短距离dist[j]=min{dist[j],dist[i]+matrix[i][j]}。根据这种思路,

假设存在G=<V,E>,源顶点为V0,U={V0},dist[i]记录V0到i的最短距离,path[i]记录从V0到i路径上的i前面的一个顶点。

1.从V-U中选择使dist[i]值最小的顶点i,将i加入到U中;

2.更新与i直接相邻顶点的dist值。(dist[j]=min{dist[j],dist[i]+matrix[i][j]})

3.知道U=V,停止。

代码实现:

复制代码
/*Dijkstra求单源最短路径 2010.8.26*/ #include <iostream>#include<stack>#define M 100#define N 100using namespace std;typedef struct node{    int matrix[N][M];      //邻接矩阵     int n;                 //顶点数     int e;                 //边数 }MGraph; void DijkstraPath(MGraph g,int *dist,int *path,int v0)   //v0表示源顶点 {    int i,j,k;    bool *visited=(bool *)malloc(sizeof(bool)*g.n);    for(i=0;i<g.n;i++)     //初始化     {        if(g.matrix[v0][i]>0&&i!=v0)        {            dist[i]=g.matrix[v0][i];            path[i]=v0;     //path记录最短路径上从v0到i的前一个顶点         }        else        {            dist[i]=INT_MAX;    //若i不与v0直接相邻,则权值置为无穷大             path[i]=-1;        }        visited[i]=false;        path[v0]=v0;        dist[v0]=0;    }    visited[v0]=true;    for(i=1;i<g.n;i++)     //循环扩展n-1次     {        int min=INT_MAX;        int u;        for(j=0;j<g.n;j++)    //寻找未被扩展的权值最小的顶点         {            if(visited[j]==false&&dist[j]<min)            {                min=dist[j];                u=j;                    }        }         visited[u]=true;        for(k=0;k<g.n;k++)   //更新dist数组的值和路径的值         {            if(visited[k]==false&&g.matrix[u][k]>0&&min+g.matrix[u][k]<dist[k])            {                dist[k]=min+g.matrix[u][k];                path[k]=u;             }        }            }    }void showPath(int *path,int v,int v0)   //打印最短路径上的各个顶点 {    stack<int> s;    int u=v;    while(v!=v0)    {        s.push(v);        v=path[v];    }    s.push(v);    while(!s.empty())    {        cout<<s.top()<<" ";        s.pop();    }} int main(int argc, char *argv[]){    int n,e;     //表示输入的顶点数和边数     while(cin>>n>>e&&e!=0)    {        int i,j;        int s,t,w;      //表示存在一条边s->t,权值为w        MGraph g;        int v0;        int *dist=(int *)malloc(sizeof(int)*n);        int *path=(int *)malloc(sizeof(int)*n);        for(i=0;i<N;i++)            for(j=0;j<M;j++)                g.matrix[i][j]=0;        g.n=n;        g.e=e;        for(i=0;i<e;i++)        {            cin>>s>>t>>w;            g.matrix[s][t]=w;        }        cin>>v0;        //输入源顶点         DijkstraPath(g,dist,path,v0);        for(i=0;i<n;i++)        {            if(i!=v0)            {                showPath(path,i,v0);                cout<<dist[i]<<endl;            }        }    }    return 0;}
复制代码

  测试数据:

  

  运行结果:

  

作者:海子
    
出处:http://www.cnblogs.com/dolphin0520/archive/2011/08/26/2155202.html




最短路径—Dijkstra算法和Floyd算法



注意:以下代码 只是描述思路,没有测试过!!

 

Dijkstra算法

1.定义概览

Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。

问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径)

 

2.算法描述

1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

2)算法步骤:

a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。

b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。

c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。

d.重复步骤b和c直到所有顶点都包含在S中。

 

执行动画过程如下图

 

3.算法代码实现:

 

复制代码
const int  MAXINT = 32767;const int MAXNUM = 10;int dist[MAXNUM];int prev[MAXNUM];int A[MAXUNM][MAXNUM];void Dijkstra(int v0){    bool S[MAXNUM];                                  // 判断是否已存入该点到S集合中      int n=MAXNUM;    for(int i=1; i<=n; ++i)    {        dist[i] = A[v0][i];        S[i] = false;                                // 初始都未用过该点        if(dist[i] == MAXINT)                  prev[i] = -1;        else               prev[i] = v0;     }     dist[v0] = 0;     S[v0] = true;       for(int i=2; i<=n; i++)    {         int mindist = MAXINT;         int u = v0;                               // 找出当前未使用的点j的dist[j]最小值         for(int j=1; j<=n; ++j)            if((!S[j]) && dist[j]<mindist)            {                  u = j;                             // u保存当前邻接点中距离最小的点的号码                   mindist = dist[j];            }         S[u] = true;          for(int j=1; j<=n; j++)             if((!S[j]) && A[u][j]<MAXINT)             {                 if(dist[u] + A[u][j] < dist[j])     //在通过新加入的u点路径找到离v0点更短的路径                   {                     dist[j] = dist[u] + A[u][j];    //更新dist                      prev[j] = u;                    //记录前驱顶点                   }              }     }}
复制代码

 

4.算法实例

先给出一个无向图

用Dijkstra算法找出以A为起点的单源最短路径步骤如下

 

Floyd算法

1.定义概览

Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2)。

 

2.算法描述

1)算法思想原理:

     Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)

      从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

2).算法描述:

a.从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。   

b.对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比己知的路径更短。如果是更新它。

3).Floyd算法过程矩阵的计算----十字交叉法

方法:两条线,从左上角开始计算一直到右下角 如下所示

给出矩阵,其中矩阵A是邻接矩阵,而矩阵Path记录u,v两点之间最短路径所必须经过的点

相应计算方法如下:

最后A3即为所求结果

 

3.算法代码实现

复制代码
typedef struct          {            char vertex[VertexNum];                                //顶点表             int edges[VertexNum][VertexNum];                       //邻接矩阵,可看做边表             int n,e;                                               //图中当前的顶点数和边数         }MGraph; void Floyd(MGraph g){   int A[MAXV][MAXV];   int path[MAXV][MAXV];   int i,j,k,n=g.n;   for(i=0;i<n;i++)      for(j=0;j<n;j++)      {                A[i][j]=g.edges[i][j];            path[i][j]=-1;       }   for(k=0;k<n;k++)   {         for(i=0;i<n;i++)           for(j=0;j<n;j++)               if(A[i][j]>(A[i][k]+A[k][j]))               {                     A[i][j]=A[i][k]+A[k][j];                     path[i][j]=k;                }      } } 
复制代码

算法时间复杂度:O(n3)



文章来源:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 




0 0