七种方式求斐波那契(Fibonacci)数列通项

来源:互联网 发布:mac跳过创建电脑账户 编辑:程序博客网 时间:2024/06/06 15:46

一:递归实现
使用公式f[n]=f[n-1]+f[n-2],依次递归计算,递归结束条件是f[1]=1,f[2]=1。
二:数组实现
空间复杂度和时间复杂度都是0(n),效率一般,比递归来得快。
三:vector<int>实现
时间复杂度是0(n),时间复杂度是0(1),就是不知道vector的效率高不高,当然vector有自己的属性会占用资源。
四:queue<int>实现
当然队列比数组更适合实现斐波那契数列,时间复杂度和空间复杂度和vector<int>一样,但队列太适合这里了,
f(n)=f(n-1)+f(n-2),f(n)只和f(n-1)和f(n-2)有关,f(n)入队列后,f(n-2)就可以出队列了。
五:迭代实现
迭代实现是最高效的,时间复杂度是0(n),空间复杂度是0(1)。
六:公式实现
百度的时候,发现原来斐波那契数列有公式的,所以可以使用公式来计算的。

          由于double类型的精度还不够,所以程序算出来的结果会有误差,如果把公式展开计算,得出的结果就是正确的。

          完整的实现代码如下:

#include "iostream"#include "queue"#include "cmath"using namespace std;int fib1(int index)     //递归实现{    if(index<1)    {        return -1;    }    if(index==1 || index==2)        return 1;    return fib1(index-1)+fib1(index-2);}int fib2(int index)     //数组实现{    if(index<1)    {        return -1;    }    if(index<3)    {        return 1;    }    int *a=new int[index];    a[0]=a[1]=1;    for(int i=2;i<index;i++)        a[i]=a[i-1]+a[i-2];    int m=a[index-1];    delete a;         //释放内存空间    return m;}int fib3(int index)           //借用vector<int>实现{    if(index<1)    {        return -1;    }    vector<int> a(2,1);      //创建一个含有2个元素都为1的向量    a.reserve(3);    for(int i=2;i<index;i++)    {        a.insert(a.begin(),a.at(0)+a.at(1));        a.pop_back();    }    return a.at(0);}int fib4(int index)       //队列实现{    if(index<1)    {        return -1;    }    queue<int>q;    q.push(1);    q.push(1);    for(int i=2;i<index;i++)    {        q.push(q.front()+q.back());        q.pop();    }    return q.back();}int fib5(int n)          //迭代实现{    int i,a=1,b=1,c=1;    if(n<1)    {        return -1;    }    for(i=2;i<n;i++)    {        c=a+b;     //辗转相加法(类似于求最大公约数的辗转相除法)        a=b;        b=c;    }    return c;}int fib6(int n){    double gh5=sqrt((double)5);    return (pow((1+gh5),n)-pow((1-gh5),n))/(pow((double)2,n)*gh5);}int main(void){    printf("%d\n",fib3(6));    system("pause");    return 0;}

七:二分矩阵方法

如上图,Fibonacci 数列中任何一项可以用矩阵幂算出,而n次幂是可以在logn的时间内算出的。

void multiply(int c[2][2],int a[2][2],int b[2][2],int mod){    int tmp[4];    tmp[0]=a[0][0]*b[0][0]+a[0][1]*b[1][0];    tmp[1]=a[0][0]*b[0][1]+a[0][1]*b[1][1];    tmp[2]=a[1][0]*b[0][0]+a[1][1]*b[1][0];    tmp[3]=a[1][0]*b[0][1]+a[1][1]*b[1][1];    c[0][0]=tmp[0]%mod;    c[0][1]=tmp[1]%mod;    c[1][0]=tmp[2]%mod;    c[1][1]=tmp[3]%mod;}//计算矩阵乘法,c=a*bint fibonacci(int n,int mod)//mod表示数字太大时需要模的数{    if(n==0)return 0;    else if(n<=2)return 1;//这里表示第0项为0,第1,2项为1    int a[2][2]={{1,1},{1,0}};    int result[2][2]={{1,0},{0,1}};//初始化为单位矩阵    int s;    n-=2;    while(n>0)    {        if(n%2 == 1)            multiply(result,result,a,mod);        multiply(a,a,a,mod);        n /= 2;    }//二分法求矩阵幂    s=(result[0][0]+result[0][1])%mod;//结果    return s;}

附带的再贴上二分法计算a的n次方函数。

int pow(int a,int n){    int ans=1;    while(n)    {        if(n&1)            ans*=a;        a*=a;        n>>=1;    }    return ans;}

转载自:http://blog.csdn.net/hackbuteer1/article/details/6684867

原创粉丝点击