陈越《数据结构》第七讲 图(中)一

来源:互联网 发布:ps怎么装磨皮软件 编辑:程序博客网 时间:2024/06/05 05:30

Tree Traversals Again

1086.Tree Traversals Again (25)
An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); pop(); pop(); push(4); pop(); pop(); push(5); push(6); pop(); pop(). Then a unique binary tree (shown in Figure 1) can be generated from this sequence of operations. Your task is to give the postorder traversal sequence of this tree.
这里写图片描述

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (<=30) which is the total number of nodes in a tree (and hence the nodes are numbered from 1 to N). Then 2N lines follow, each describes a stack operation in the format: “Push X” where X is the index of the node being pushed onto the stack; or “Pop” meaning to pop one node from the stack.

Output Specification:

For each test case, print the postorder traversal sequence of the corresponding tree in one line. A solution is guaranteed to exist. All the numbers must be separated by exactly one space, and there must be no extra space at the end of the line.

Sample Input:
6
Push 1
Push 2
Push 3
Pop
Pop
Push 4
Pop
Pop
Push 5
Push 6
Pop
Pop
Sample Output:
3 4 2 6 5 1

题目大意
用栈的形式给出一棵二叉树的建立的顺序,求这棵二叉树的后序遍历
分析:栈实现的是二叉树的中序遍历(左根右),而每次push入值的顺序是二叉树的前序遍历(根左右),所以该题可以用二叉树前序和中序转后序的方法做~~

#include <cstdio>#include <stack>using namespace std;int preorder[35], inorder[35];int n, preid = 0, inid = 0, cnt = 0;int get(){    char s[10];    scanf("%s", s);    if (s[1] == 'o') return -1;    int a;    scanf("%d", &a);    return a;}void build(int preb, int pree, int inb, int ine){    if (preb > pree) return;    int root = preorder[preb];    int inroot = inb;    while (inorder[inroot] != root) ++inroot;    build(preb+1, preb+inroot-inb, inb, inroot-1);    build(preb+inroot-inb+1, pree, inroot+1, ine);    if (cnt++ != 0) putchar(' ');    printf("%d", root);}int main(){    scanf("%d", &n);    stack<int> st;    for (int i = 0; i < n*2; ++i){        int a = get();        if (a != -1){            st.push(a);            preorder[preid++] = a;        }else{            inorder[inid++] = st.top();            st.pop();        }    }    build(0, n-1, 0, n-1);    return 0;}

Complete Binary Search Tree

A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

The left subtree of a node contains only nodes with keys less than the node’s key.
The right subtree of a node contains only nodes with keys greater than or equal to the node’s key.
Both the left and right subtrees must also be binary search trees.
A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.

Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (<=1000). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.

Output Specification:

For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.
这里写图片描述
Sample Input:
10
1 2 3 4 5 6 7 8 9 0
Sample Output:
6 3 8 1 5 7 9 0 2 4

题意
给一串构成树的序列,已知该树是完全二叉搜索树,求它的层序遍历的序列
分析
总得概括来说,已知中序,可求root下标,可以求出层序。
1. 因为二叉搜索树的中序满足:是一组序列的从小到大排列,所以只需排序所给序列即可得到中序
2. 因为根据完全二叉树的结点数,可以求出它的根结点在中序中对应的下标
3. 如此,已知了中序,又可以根据结点数求出根结点的下标,就可以递归求出左右子树的根结点的下标
4. i结点的左孩子为2 * i + 1,右孩子2 * i + 2,就可以根据结点下标和中序数组赋值level数组
5. 最后输出所有结点的层序数组level

这里写图片描述
图1
这里写图片描述
图2
这里写图片描述
图3

#include <cstdio>#include <cstdlib>#include <math.h>const int MaxNum = 1005;int node[MaxNum];int tree[MaxNum];int cmp(const void *a,const void *b){/*以图2为基准*/    int *pa = (int *)a;    int *pb = (int *)b;    return *pa-*pb;}int GetLeftLength(int n){/*以图3为基准*/    int h, x, l;    /*转换成以2为底*/    h = log((double)(n + 1))/log (2.0);    x = n + 1 - pow(2.0, h);    if (x > pow(2.0, h - 1)) {        x = pow(2.0, h - 1);    }    l = pow(2.0, h - 1) - 1 + x;    return l;}void solve(int ALeft, int ARight, int TRoot){/*初始调用为solve(0,N-1,0)*//*以图1为基准*/    int n,L,LeftTRoot,RightTRoot;    n = ARight - ALeft + 1;    if(n==0) return;        /*考虑完美二叉树的情况*/    L = GetLeftLength(n);    /*计算出n个节点的树,其左子树有多少个节点*/    tree[TRoot] = node[ALeft + L];    LeftTRoot = TRoot * 2 + 1;    RightTRoot = LeftTRoot + 1;    solve(ALeft, ALeft + L -1, LeftTRoot);    solve(ALeft + L + 1, ARight , RightTRoot);}int main(){    int i,n;    /*输入*/    scanf("%d",&n);    for(i=0;i<n;++i){        scanf("%d",&node[i]);    }    /*从大到小排序*/    qsort(node,n,sizeof(int),cmp);    /*排序成完全二叉树*/    solve(0,n-1,0);    /*输出*/    printf("%d",tree[0]);    for(i=1;i<n;++i){        printf(" %d",tree[i]);    }    printf("\n");    system("pause");    return 0;}

Huffman Codes

PTA - Data Structures and Algorithms (English) - 5-9

In 1953, David A. Huffman published his paper “A Method for the Construction of Minimum-Redundancy Codes”, and hence printed his name in the history of computer science. As a professor who gives the final exam problem on Huffman codes, I am encountering a big problem: the Huffman codes are NOT unique. For example, given a string "aaaxuaxz", we can observe that the frequencies of the characters a,x,uandz are 4, 2, 1 and 1, respectively. We may either encode the symbols as a=0,x=10,u=110,z=111, or in another way as a=1,x=01,u=001,z=000, both compress the string into 14 bits. Another set of code can be given as a=0,x=11,u=100,z=101, but a=0,x=01,u=011,z=001 is NOT correct since "aaaxuaxz" and "aazuaxax" can both be decoded from the code 00001011001001. The students are submitting all kinds of codes, and I need a computer program to help me determine which ones are correct and which ones are not.

Input Specification:

Each input file contains one test case. For each case, the first line gives an integer N (2N63), then followed by a line that contains all the N distinct characters and their frequencies in the following format:

c[1],f[1],c[2],f[2],...c[N],f[N]
where c[i] is a character chosen from {'0' - '9', 'a' - 'z', 'A' - 'Z', '_'}, and f[i] is the frequency of c[i]and is an integer no more than 1000. The next line gives a positive integer M (≤1000), then followed by Mstudent submissions. Each student submission consists of N lines, each in the format:

c[i],code[i]
where c[i] is the ith character and code[i] is an non-empty string of no more than 63 ‘0’s and ‘1’s.

Output Specification:

For each test case, print in each line either “Yes” if the student’s submission is correct, or “No” if not.

Note: The optimal solution is not necessarily generated by Huffman algorithm. Any prefix code with code length being optimal is considered correct.

Sample Input:
7 //结点数目num
A 1 B 1 C 1 D 3 E 3 F 6 G 6 //每个结点数据data及出现的次数weight
4 //测试数据的组数checkNum
A 00000 //之后的 4*7行 是结点数据ch及其编码s
B 00001
C 0001
D 001
E 01
F 10
G 11
A 01010
B 01011
C 0100
D 011
E 10
F 11
G 00
A 000
B 001
C 010
D 011
E 100
F 101
G 110
A 00000
B 00001
C 0001
D 001
E 00
F 10
G 11
Sample Output:
Yes
Yes
No
No

题目分析

这是一道考察“哈夫曼编码”的问题,但是这里不一定非要把哈夫曼树构造出来。Note: The optimal solution is not necessarily generated by Huffman algorithm
- 输入:第一行是结点数目num;第二行是每个结点数据data及出现的次数weight;第三行是测试数据的组数checkNum;第四行及以后是结点数据ch及编码s。

  • 输出:对于每一组测试数据,输出编码是否符合“哈夫曼编码”,是则输出Yes,否则输出No。

  • 符合“哈夫曼编码”需要符合两个条件:
    WPL

例1:最优编码不一定通过Huffman算法得到。给定4个字符及其出现频率:A:1;B:1;C:2;D:2。下面哪一套不是用Huffman算法得到的正确的编码?
A. A:000; B:001; C:01; D:1
B. A:10; B:11; C:00; D:01
C. A:00; B:10; C:01; D:11
D. A:111; B:001; C:10; D:1
解析:C
根据答案,画出每个答案的Huffman tree,再一个个的对答案是否正确。

例2Huffman Codes的特点:

  1. 最优编码 —— 总长度(WPL)最小;
  2. 无歧义解码 —— 前缀码:数据仅存于叶子结点;
  3. 没有度为1 的结点 —— 123
    注意231!比如:
    这里写图片描述

解法:

解法转自:http://www.cnblogs.com/clevercong/p/4193370.html
1) map 用于存放:A 1 B 1 C 1 D 3 E 3 F 6 G 6 //每个结点的数据data及出现的次数(权值)weight

2) 使用C++标准库中的优先队列:priority_queue,引入头文件 #include 。优先队列底层由堆实现,数据放入队列后,会自动按照“优先级”排好顺序。

#include <map>#include <queue>map<char, int> myMap;priority_queue<int, vector<int>, greater<int> >pq;  //小顶堆for(int i=0; i<num; i++)  // 输入结点的数据c[i]、权值f[i]{    cin >> c[i] >> f[i];    myMap[c[i]] = f[i];  // 映射    pq.push(f[i]);  // 向队列中添加元素}

3) 计算WPL的值,从priority_queue中取出两个元素,相加之后再放回队列里。

// 计算WPL的值int myWpl = 0;while(!pq.empty()){    int myTop = pq.top();    pq.pop();    if(!pq.empty())    {        int myTop2 = pq.top();        pq.pop();        pq.push(myTop + myTop2);        int m = myTop + myTop2;        myWpl += m;  //每次加m(子节点权值重复加入) 等效于 路径长度*权值    }}

4) 测试数据需按编码排序,但标准库并没有为map制定sort函数,因此我们用vector装载pair类型,既可以模仿出map的功能,又可以用vector的排序函数。

#include <algorithm>  // sort()typedef pair<char, string> PAIR;  // 用PAIR来代替pair<char, string> (编码类型:string)// cmp():自定义按什么内容或大小顺序排序// 这里是按编码的长度排序int cmp(const PAIR& x, const PAIR& y){    return x.second.size() < y.second.size();}// vector + pair<,> 模仿 mapvector<PAIR> checkVec;checkVec.push_back(make_pair(ch, s));  // 向vector中添加元素sort(checkVec.begin(), checkVec.end(), cmp);  // 按照编码的长度排序

5) 判断前缀问题:substr函数,取字符串中的一段并与当前编码进行比较。

bool flag = true;  //已符合条件一:wpl最小for(int i=0; i<num; i++){    string tmp = checkVec[i].second;  for(int j=i+1; j<num; j++)    {        if(checkVec[j].second.substr(0,tmp.size())==tmp)            flag = false;    }}

完整代码

#include <iostream>#include <algorithm>  // 排序函数 sort()#include <map>#include <queue>using namespace std;typedef pair<char, string> PAIR;  // + vector来模仿 mapint cmp(const PAIR& x, const PAIR& y)  // 自定义让sort()按哪种方式排序{    return x.second.size() < y.second.size();}int main(){    int num;    cin >> num;    char *c = new char[num];    int *f = new int[num];    map<char, int> myMap;  // 用来存节点数据及权值,并构成映射    // 使用优级队列    priority_queue<int, vector<int>, greater<int> >pq;    for(int i=0; i<num; i++)  // 输入结点及出现次数(权值)    {        cin >> c[i] >> f[i];        myMap[c[i]] = f[i];        pq.push(f[i]);  // 将权值压入优先队列    }    // 计算WPL的值    int myWpl = 0;    while(!pq.empty())    {        int myTop = pq.top();        pq.pop();        if(!pq.empty())        {            int myTop2 = pq.top();            pq.pop();            pq.push(myTop + myTop2);            int m = myTop + myTop2;            myWpl += m;        }    }    // 输入测试数据    int checkNum;  // 测试数据的组数    cin >> checkNum;    for(int i=0; i<checkNum; i++)    {        int wpl = 0;        char ch;        string s;        // vector + PAIR 模仿 map,使其可排序        vector<PAIR> checkVec;        for(int j=0; j<num; j++)        {            cin >> ch >> s;            checkVec.push_back(make_pair(ch, s));  // 向vector中添加测试数据及其编码            wpl += s.size() * myMap[ch];        }        sort(checkVec.begin(), checkVec.end(), cmp);  // 按照编码长度排序        if(wpl != myWpl)        {            cout << "No" << endl;            continue;        }        else        {            bool flag = true;  // 表示已满足条件一:wpl最小(wpl==myWpl)            //条件二:编码的前缀不能是其他编码的前缀:substr()            for(int i=0; i<num; i++)            {                string tmp = checkVec[i].second;                for(int j=i+1; j<num; j++)                {                    if(checkVec[j].second.substr(0,tmp.size())==tmp)                        flag = false;                }            }            if(flag == true)                cout << "Yes" << endl;            else                cout << "No" << endl;            continue;        }        cout << "Yes" << endl;    }    return 0;}

总结的程序

#include <iostream>#include <string>using namespace std;struct Heap{    int *data;    int size = 0;};struct cnode{    int tag = 0;    cnode *left = nullptr;    cnode *right = nullptr;};Heap *Init_Heap(int n); //初始化小根堆(利用静态链表的逻辑结构);void Insert_Heap(Heap *H, int x);   //把元素依次插入小根堆;int Delmin_Heap(Heap *H);   //删除小根堆中的最小元素;int Cal_Wpl(Heap *H);   //计算huffman编码的wpl;int wpl_prefix(int *sample, int n, int &re);    //计算待测编码的wpl及判断是否为前缀编码;/*思路:要判断是否,需要解决两个问题: 1)编码wpl等于huffman编码的wpl;2)待测编码是前缀编码。问题1: 首先要求出标准wpl。观察huffman树,我们发现其wpl是非叶子结点权值和。于是,我们无需构造出huffman树来求权值(麻烦点),通过模拟树的构造过程,理由小根堆的特点求出wpl;而待测编码的wpl就是利用每个编码的字符串长度,乘以每个字符的权值得到;问题2:思路是构造一个二叉树出来,模拟huffman树。1.让每个编码遍历树,结束时在当前结点设置标记为1;2.如果遍历时,未结束时碰到了标记为1的结点,则不是前缀编码;3.结束时,未碰到标记点(包括最后一个),是前缀编码。*/int main(){    int n, i, val;    char ch;    cin >> n;    int *sample = new int[n];   //每个字符权值存储在这里;    Heap *H = Init_Heap(n); //初始化小根堆(利用静态链表的逻辑结构);    for (i = 0; i < n; i++)    {        cin >> ch >> val;        sample[i] = val;        Insert_Heap(H, val);    //把元素依次插入小根堆;    }    int best_wpl = Cal_Wpl(H);  //计算huffman编码的wpl;    int m, wpl, re; //re是用来判断是否前缀编码,是为1,否为0;    cin >> m;    for (i = 0; i < m; i++)    {        wpl = wpl_prefix(sample, n, re);    //计算待测编码的wpl及判断是否为前缀编码;        if (wpl == best_wpl && re == 1)            cout << "Yes" << endl;        else            cout << "No" << endl;    }    delete sample;    return 0;}Heap *Init_Heap(int n){    Heap *H = new Heap;    H->data = new int[n + 1];   //堆的下标从1开始(为了操作方便);    H->data[0] = -1;    //小根堆赋值最小值;    return H;}void Insert_Heap(Heap *H, int x)    //把元素依次插入小根堆;{    int i = ++(H->size);    for (; H->data[i / 2] > x; i /= 2)  //从下往上过滤;        H->data[i] = H->data[i / 2];    H->data[i] = x;    return;}int Delmin_Heap(Heap *H)    //删除小根堆中的最小元素;{    int t = H->data[H->size--];    int min = H->data[1];    int pa, chi;    for (pa = 1; pa * 2 <= H->size; pa = chi)   //从上往下过滤最小元素;    {        chi = pa * 2;        if (chi != H->size && H->data[chi + 1] < H->data[chi])  //找到子结点的最小下标;            chi++;        if (t < H->data[chi])            break;        else            H->data[pa] = H->data[chi];    }    H->data[pa] = t;    //赋值最小元素    return min;}int Cal_Wpl(Heap *H)    //计算huffman编码的wpl;{    int sum = 0;    if (H->size > 1)    {        int i, t1, t2, t;        int m = H->size;        for (i = 1; i < m; i++)        {            t1 = Delmin_Heap(H);    //模拟构造huffman树的过程,先取出两个最小值,相加,把和插入堆中;            t2 = Delmin_Heap(H);            t = t1 + t2;            Insert_Heap(H, t);            sum += t;        }    }    else        sum = H->data[0];    return sum;}int wpl_prefix(int *sample, int n, int &re) //计算待测编码的wpl及判断是否为前缀编码;{    int i, j, len, wpl = 0;    char ch;    string st;    cnode *phead = new cnode;    cnode *p = phead;    re = 1;    for (i = 0; i < n; i++)    {        cin >> ch >> st;    //此处计算wpl;        len = st.length();        wpl += len*sample[i];        if (re != 0)    //此处判断是否前缀编码;        {            for (j = 0; j < len; j++)            {                if (st[j] == '0')   //0的话判断左边;                {                    if (p->left == nullptr) //左边空,新建结点;                    {                        cnode *q = new cnode;                        p->left = q;                    }                    else                    {                        if (p->tag == 1)                        {                            re = 0;                            break;                        }                    }                    p = p->left;                }                else if (st[j] == '1')  //判断右边;                {                    if (p->right == nullptr)                    {                        cnode *q = new cnode;                        p->right = q;                    }                    else                    {                        if (p->tag == 1)                        {                            re = 0;                            break;                        }                    }                    p = p->right;                }            }            if (p->left == nullptr && p->right == nullptr)                re = 1;            else                re = 0;            if (p->tag == 0)    //注意此处需要判断,最后结点标记不为1才能赋值(待测编码有可能有相同的);                p->tag = 1;            else                re = 0;            p = phead;        }    }    return wpl;}
原创粉丝点击