最大公约数问题

来源:互联网 发布:linux好用的输入法 编辑:程序博客网 时间:2024/05/16 19:50

写一个程序,求两个正整数的最大公约数。如果两个正整数都很大,有什么简单的算法吗?

 

 

分析与解法

求最大公约数是一个很基本的问题。早在公元前300年左右,欧几里得就在他的著作《几何原本》中给出了高效的解法——辗转相除法。辗转相除法使用到的原理很聪明也很简单,假设用fx,y)表示xy的最大公约数,取k = x/yb =x%y,则x = ky + b,如果一个数能够同时整除xy,则必能同时整除by;而能够同时整除by的数也必能同时整除xy,即xy的公约数与by的公约数是相同的,其最大公约数也是相同的,则有fx,y)= fy, y % x)(y > 0),如此便可把原问题转化为求两个更小数的最大公约数,直到其中一个数为0,剩下的另外一个数就是两者最大的公约数。辗转相除法更详细的证明可以在很多的初等数论相关书籍中找到,或者读者也可以试着证明一下。

示例如下:

f(42, 30)=f(30, 12)= f(12, 6)=f(6, 0)= 6

【解法一】

最简单的实现,就是直接用代码来实现辗转相除法。从上面的描述中,我们知道,利用递归就能够很轻松地把这个问题完成。

具体代码如下:

int gcd(int x, int y)

{

    return (!y)?x:gcd(y, x%y);

}

【解法二】

在解法一中,我们用到了取模运算。但对于大整数而言,取模运算(其中用到除法)是非常昂贵的开销,将成为整个算法的瓶颈。有没有办法能够不用取模运算呢?

采用类似前面辗转相除法的分析,如果一个数能够同时整除xy,则必能同时整除x-yy;而能够同时整x-yy的数也必能同时整除xy,即xy的公约数与x-yy的公约数是相同的,其最大公约数也是相同的,即fx,y)= fx-y, y),那么就可以不再需要进行大整数的取模运算,而转换成简单得多的大整数的减法。

在实际操作中,如果x<y,可以先交换(x, y)(因为(x, y)=(y, x)),从而避免求一个正数和一个负数的最大公约数情况的出现。一直迭代下去,直到其中一个数为0。

示例如下:

f(42, 30)=f(30, 12)=f(12, 18)= f(18, 12)= f(12, 6)= f(6, 6)= f(6, 0)= 6

解法二的具体代码如下:

代码清单2-15

BigInt gcd(BigInt x, BigInt y)

{

    if(x < y)

        return gcd(y, x);

    if(y == 0)

        return x;

    else

        return gcd(x - y, y);

}

代码中BigInt是读者自己实现的一个大整数类(所谓大整数当然可以是成百上千位),那么就要求读者重载该大整数类中的减法运算符“-”,关于大整数的具体实现这里不再赘述,若读者只是想验证该算法的正确性,完全可使用系统内建的int型来测试。

这个算法,免去了大整数除法的繁琐,但是同样也有不足之处。最大的瓶颈就是迭代的次数比之前的算法多了不少,如果遇到(10 000 000 000 000, 1)这类情况,就会相当地令人郁闷了。

【解法三】

解法一的问题在于计算复杂的大整数除法运算,而解法二虽然将大整数的除法运算转换成了减法运算,降低了计算的复杂度,但它的问题在于减法的迭代次数太多,那么能否结合解法一和解法二从而使其成为一个最佳的算法呢?答案是肯定的。

首先从分析公约数的特点入手:

对于yx来说,如果y=k * y1x=k *x1。那么有fy,x)= k * fy1,x1)。

另外,如果x = p * x1,假设p是素数,并且y %p ! = 0(即y不能被p整除),那么fx, y)=fp * x1,y)= fx1,y)。

注意到以上两点之后,我们就可以利用这两点对算法进行改进。

最简单的方法是,我们知道,2是一个素数,同时对于二进制表示的大整数而言,可以很容易地将除以2和乘以2的运算转换成移位运算,从而避免大整数除法,由此就可以利用2这个数字来进行分析。

p = 2

x, y均为偶数,fx, y)= 2 * fx/2,y/2)= 2 * fx>>1, y>>1)

x为偶数,y为奇数,fx, y)= fx/2,y)= fx>>1, y

x为奇数,y为偶数,fx, y)= fx,y/2)= fx, y>>1)

x, y均为奇数,fx, y)= fx,x - y),

那么在fx, y)= fx, x - y)之后,(x - y)是一个偶数,下一步一定会有除以2的操作。

因此,最坏情况下的时间复杂度是O(log2(max(x,y))。

考虑如下的情况:

       f(42, 30)= f(1010102, 111102

                       = 2 * f(101012, 11112

                       = 2 * f(11112, 1102

                       = 2 * f(11112, 112

                       = 2 * f(11002, 112

                       = 2 * f(112, 112

                       = 2 * f(02, 112

                       = 2 * 112

                       = 6

根据上面的规律,具体代码实现如下:

代码清单2-16

BigInt gcd(BigInt x, BigInt y)

{

    if(x < y)

        return gcd(y, x);

    if(y == 0)

        return x;

    else

    {

        if(IsEven(x))

        {

            if(IsEven(y))

                return (gcd(x >> 1, y >> 1) << 1);

            else

                return gcd(x >> 1, y);

        }

        else

        {

            if(IsEven(y))

                return gcd(x, y >> 1);

            else

                return gcd(y, x - y);

        }

    }

}

BigInt见解法二中的解释,IsEven(BigInt x)函数检查x是否为偶数,如果x为偶数,则返回true,否则返回false。

解法三很巧妙地利用移位运算和减法运算,避开了大整数除法,提高了算法的效率。程序员常常将移位运算作为一种技巧来使用,最常见的就是通过左移或右移来实现乘以2或除以2的操作。其实移位的用处远不止于此,如求一个整数的二进制表示中1的个数问题(见本书2.1节“求二进制数中1的个数”)和逆转一个整数的二进制表示问题等,往往让人拍案叫绝。

 

原创粉丝点击